


Signal and Noise along the Auditory Pathway Leipzig, December 6–7 2013

organised by the Max Planck Research Group "Auditory Cognition" Jonas Obleser · obleserlab.com · obleser@cbs.mpg.de

Disclaimer Note: The attached slides do reflect *only* Jonas Obleser's reading, interpretation, and summary of the speakers' scientific talks. They serve the *sole purpose* of a "visual memory", and are not intended to (nor are they allowed to) be used for any other purpose. Ad-hoc inside jokes have been left, unmarked as such, in place for hilariousness only. **If you have any question please email the respective speakers directly.** Thanks to all speakers for their valuable input in making SNAP 2013 such an overwhelming success.

Signal and Noise along the auditory pathway(s):

How to integrate all the knowledge from modelling, psychophysics, neuroscience, cognitive psychology?

Ingrid Johnsrude

- Effort is only present when there is attention!
- Perceptual learning of degraded speech can only take place when there is attention!

- Familiarity of non-attended streams help segregation in younger, but not older listeners (see also Bendixen, predictability)
- Don't put Ketchup on the Baby Jesus

Torsten Dau

- Time- and modulation-freq. resolved envelope-SNRs ("sEPSM") can account for speech intelligibility in a wide array of different masking noises
- Term of "informational masking" (maybe) not needed or at least not helpful as of yet
- Use simple models; make only more complicated as a mismatch with data calls for it

Alexandra Bendixen

- "Signal" vs "Noise" defined by the listener's goals!
- No proof but diverse evidence that the brain is a prediction machine
- Predictability cues can (maybe stabilise, but definitely) structure our percepts
- "Analogy" experiments on different levels of complexity
- Rhythm is a dancer

Maria Chait

- How are regularities extracted in the first place?
- How long does it take (1.5 cycles)? Holds true for Brain/RMS signal
- Brain/RMS: Greater "gain" for regular sequences, with "set point" of gain
- Listeners are better in detecting emergence than violations of regularity (i.e., we hold on to it a bit longer than the evidence warrants)

Jonathan Peelle

- Speech is quasi-periodic optimises neural "excitability timing"?
- Acoustic-Neural Coherence increases with intelligibility, might explain phoneme/speech rate effects
- Speech = "modulated noise with meaning"
- Time-resolved fMRI of sentence-level processing allows dissociation of contributions
- Verbal short-term memory is under fire from noisy speech
- I've got the Phase

Peter Lakatos

- Oscillations would be noise, were they not able to become reset by the environment
- Spectro-temporal filtering by entraining best and non-best freq. to opposite phases
- Attention controls the entrainment-up-setting system
- Entrainment is set up by an independent system, independent from the system that transmits information

Nathan Weisz

• Variability in trials \neq nothing \neq noise

- Alpha cannot be claimed by one cognitive function, but potentially serves a parsimonious "inhibitory" function
- Synchronization in <u>Networks by Alpha Power</u> (Weisz et al., Nature Reviews Neuroscience 2014): Closed and open network states
- Predisposing network states predict perception and stimulus-evoked neural activity

Katharina von Kriegstein

- "Face benefit": Exposure to faces helps voice (and speech) recognition later, more so with increasing noise
- visual face movement areas (pSTS) are causally involved in face benefit
- Direct connectivity / cross-talk of fusiform (face) and anterior STS (voice) regions, hypothesised to increase with noise
- In speech, forward predictions are fed down to sensory thalamus

*) To my utter dismay, "Apache" seems to have been sampled by about 40,000 hip-hop producers, but never by the Frankfurt-based Eurodance project "SNAP"

Josh McDermott

- One of the most famous drum breaks in the world *) can be reconstructed only from the envelopes in a set of (say, 40) bands
- Sound textures provide simple statistical properties (envelope moments) that can be used to distinguish between them
- Listener prefer reconstructions based on biologically plausible constraints
- Evidence for listeners' (exclusive) usage of long-term statistics in sound textures (potentially a memory/buffer overflow constraint)

Carolyn McGettigan

- Left hemisphere areas in STG/STS do carry more *information* about intelligible speech (when using high-level baselines)
- "Noise" (but see N. Weisz) in our data has many sources across participants, within participants, from tasks, from design choices
- When and how activity occurs (see also J. Peelle) is the next frontier for functional neuroimaging approaches

SNAP SUPPORT

Margund GreinerDunja KunkeLeo WaschkeLee MillerRené BlankSteven KalinkeMirja KuhlencordJonathan PeelleRudolf RübsamenAntje Strauß, Anna Wilsch, and the entire Auditory Cognition Group