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Abstract
Human observers automatically extract temporal contingencies from the environment and predict the onset of future
events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for
an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain
tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit
variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data
recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target
tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either
was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at
intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod).
Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were
able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable
signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the
supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the
relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model
approach can be utilized to track abstract time-resolved stimuli.
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Introduction
Time provides the structure of our experience and is the

basis of many cognitive processes, such as motor acts

and speech processing. Even when we do not con-
sciously track the passage of time, the extraction of tem-
poral contingencies from the environment allows us to
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Significance Statement

Extracting temporal predictions from sensory input allows one to process future input more efficiently and
prepare responses in time. In mathematical terms, temporal predictions can be described by the hazard
function, modeling the probability of an event occurring over time. Here, we show that the human EEG
tracks temporal hazard in an implicit foreperiod paradigm. Forward-encoding models trained to predict the
recorded EEG signal from different temporal-hazard functions were able to distinguish between experi-
mental conditions that differed in their buildup of hazard over time. These neural signatures of tracking
temporal hazard converge with the extant literature on temporal processing and provide new evidence that
the supplementary motor area tracks hazard under strictly implicit timing conditions.
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generate temporal predictions about the occurrence of
future events (Nobre et al., 2007; Coull, 2009).

In mathematical terms, temporal predictions can be
expressed by the hazard function, which models for any
time point in a predefined interval the conditional proba-
bility of an event to occur, given it has not yet occurred.
Crucially, temporal hazard depends on both elapsed time
in the current situation and the observer’s expectation
about possible durations, that is, the underlying distribu-
tion of durations. For example, when waiting at a traffic
light, one might assume that waiting times vary in the
range of several seconds and that any duration in that
range is equally likely (i.e., assuming a uniform distribution
of durations). In this case, the hazard for the light to turn
green rises monotonically with elapsed time. Or, one
could assume that some durations are more probable
than others, for example because most traffic lights
change from red to green at around 30 s (i.e., assume a
distribution with one or more peaks resulting in a modu-
lated hazard function). Little is known yet about how
flexibly we extract statistical distributions of durations and
use the resulting hazard functions to create temporal
predictions, and which cognitive and neural processes
are involved in this process.

Previous studies have shown that temporal hazard
shapes behavioral responses (Karlin, 1966; Niemi and
Näätänen, 1981; Tsunoda and Kakei, 2011; Tomassini
et al., 2016) and is reflected in neural processing in mon-
keys (Akkal et al., 2004; Janssen and Shadlen, 2005;
Jazayeri and Shadlen, 2015) and humans (Trillenberg
et al., 2000; Praamstra et al., 2006; Cui et al., 2009; Bueti
et al., 2010; Cravo et al., 2011; Jazayeri and Shadlen,
2015). For instance, Janssen und Shadlen(2005) tested
whether monkeys learn to distinguish a unimodal from a
bimodal duration distribution and showed that reaction
times and recordings of single-neuron activity in the
lateral intraparietal area correlated with the respective
hazard functions of unimodal or bimodal duration distri-
butions. In humans, Bueti et al. (2010), using functional
MRI (fMRI), and Trillenberg et al. (2000), using electroen-
cephalogram (EEG), showed that neural activity before
target onset correlated with the respective hazard func-
tion. These studies used a so-called set-go-task, in which
the participant has to withhold a response from a set-cue
until the presentation of a go-cue, which enforces the use
of temporal hazard. Trillenberg et al.’s participants were
even informed about the underlying foreperiod probability

distributions, which might have promoted the use of ex-
plicit timing strategies.

Here, our aim was to test whether observers use tem-
poral hazard in a sensory task with no explicit incentives
for timing. In contrast to explicit timing situations, in which
participants are asked to provide an overt estimate of
elapsed time, implicit timing does not require an overt
judgment of time but assumes that temporal contingen-
cies guide response behavior in a covered way (Coull and
Nobre, 2008; Nobre and van Ede, 2018). Building on the
earlier work, we were interested in whether human ob-
servers can distinguish between different levels of implicit
temporal predictability. Instead of using duration distribu-
tions that differ with respect to the most likely time point
at which an event is predicted to happen, we used three
different unimodal probability distributions, all with equal
mean. To vary the level of temporal predictability, we used
either a uniform distribution (nonpredictive; mean duration
� 1.8 s) or two Gaussian-shaped distributions with the
same mean and larger (weakly predictive) and smaller
(strongly predictive) standard deviations (see Fig. 1). Pre-
viously, we showed that the nonpredictive and strongly
predictive conditions evoked distinguishable correlates of
temporally predictive processing (Herbst and Obleser,
2017). Here, we asked whether the concept of temporal
hazard, derived from the foreperiod distributions, can
explain human behavior in an implicit foreperiod paradigm
and whether it bears tractable signatures in the human
EEG.

For the uniform foreperiod distribution, the hazard func-
tion rises monotonically toward the end of the range of
possible intervals, but for the two Gaussian distributions,
it is modulated and contains an earlier peak, too. To track
the neural processing of temporal hazard over time, we
measured response times and recorded neural activity
with the EEG. We applied a forward-encoding model
approach (following Lalor et al., 2006, 2009; see also
O’Sullivan et al., 2015; Fiedler et al., 2017), using the
hazard functions as time-resolved regressors to model
the time-domain EEG data. To our knowledge, this is the
first time that the encoding model approach has been
applied to track the processing of an entirely abstract
stimulus like temporal hazard, which is not related to the
acoustic signal. Hence, a secondary aim of the presented
approach was to proof the applicability of encoding mod-
els to track the processing of abstract stimuli in human
time-domain EEG. Assessing the fit between modeled
and measured time-domain EEG signals allowed us to
quantify the representation of temporal hazard in the EEG,
showing that the human brain distinguishes between dif-
ferent conditions of implicit temporal hazard.

Materials and Methods
Participants

A total of 24 healthy participants were tested (mean age
23.9 � SD 2.2 years; 11 female, all right-handed), all
reporting normal hearing and no history of neurologic
disorders. Participants gave informed consent and re-
ceived payment for the experimental time (€7 per hour).
The study procedure was approved by the local ethics
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Figure 1. Paradigm and response times. A, Example trial. On each trial, the simultaneous onset of the fixation cross and the noise
served as a temporal cue. After a variable foreperiod interval, a single target tone was presented and participants had to judge its pitch
as low or high. B, Foreperiod probability distributions. Foreperiods for each block were drawn from one of three distributions: a
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committee (University of Leipzig, Germany). Note that this
paper reports extensive modeling and reanalysis of data
that had been acquired for a study published earlier (Ex-
periment II in Herbst and Obleser, 2017).

Code and data accessibility
Publicly available Matlab toolboxes were used for the

analyses (Fieldtrip, mTRF Toolbox: Crosse et al., 2016).
The data and custom-written analyses scripts are avail-
able at the Open Science Framework: https://osf.io/qb-
hma/.

Stimuli and paradigm
The EEG experiment was conducted in an electrically

shielded sound-attenuated EEG booth. Stimulus pre-
sentation and collection of behavioral responses was
achieved using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997). Responses were entered on a custom-
built response box, using the fingers of the right hand for
pitch judgment and the fingers of the left hand for a
subsequent confidence rating. Auditory stimuli were de-
livered via headphones (Sennheiser HD 25-SP II) at 50 dB
above the individual’s sensation level. Stimuli were pure
tones of varying frequencies (duration 50 ms with a 10-ms
on- and offset ramp), embedded in low-pass (5-kHz) fil-
tered white noise. Sensation level was individually prede-
termined for the noise using the method of limits, and
tone-to-noise ratio was fixed at –16 dB. Target tones
varied in individually predetermined steps around a
750-Hz standard, which was itself never presented. Par-
ticipants had to perform a pitch discrimination task on a
single tone presented in noise: “Was the tone rather high
or low?” (for an exemplary trial, see Fig. 1A), followed by
a confidence rating on a three-level scale. The beginning
of each trial was indicated by the simultaneous onset of
the fixation cross and the noise. In 10% of all trials,
participants received an additional explicit timing ques-
tion (“Was the interval between the cue and the tone
rather short or long?”) after the confidence rating. On
average, 65% of these trials were answered correctly,
showing that participants had processed the foreperiod
duration and were able to retrieve it.

Foreperiod distributions and hazard functions
Foreperiods ranged from 0.5 to 3.1 s (mean 1.8 s) and

were drawn from three different probability distributions
(shown in Fig. 1B). For the nonpredictive condition, 25
discrete foreperiods were drawn from a uniform distribu-
tion. We call this condition nonpredictive, because
throughout the trial all tone onset times were equally
likely. Nevertheless, because of the unidirectional nature
of time, participants’ expectation for a target to occur

should rise with elapsed time during these trials (as indi-
cated by the hazard function, see below). For the two
temporally predictive conditions, we drew foreperiods
from two normal distributions with the same mean as the
uniform distribution but varying standard deviations, to
create a weakly predictive condition (SD � 0.15; resulting
in five discrete foreperiods) and a strongly predictive con-
dition (SD � 0.05; resulting in three discrete foreperiods).
Furthermore, we added additional trials at three short
(0.50, 0.93, 1.37 s) and three long (2.23, 2.67, 3.10 s)
foreperiods to both predictive conditions (see foreperiod
distributions in Fig. 1B), resulting in 25, 32, and 34 trials
per block for the nonpredictive, weakly predictive, and
strongly predictive conditions, respectively. The addi-
tional trials were included in all analyses, and foreperiods
were presented in a counterbalanced manner.

Interstimulus intervals (ISIs) were drawn from a trun-
cated exponential distribution (mean 1.5 s, truncated at
5 s). This way, we obtained maximally unpredictable ISIs
(Näätänen, 1971), to prevent entrainment to the stimula-
tion over trials. To obtain the hazard functions (depicted in
Fig. 1D), we transformed the discrete values of the fore-
period probability distributions (including the additional
trials). The hazard function is defined as

H�t� �
f�t�

1 � C�t�
(1)

with t being time points throughout a trial t � 1. . .T, f the
foreperiod probability distribution, and C the cumulative
function thereof. For normalization purposes, we first re-
placed infinite values that occurred for H(t) when C(t) � 1
by the maximum of the remaining values of H(f), and
divided all values by that maximum to achieve hazard
values ranging between 0 and 1. The uniform foreperiod
distribution from the nonpredictive condition results in a
monotonic hazard function rising throughout the trial, in-
dicating that if no tone has occurred yet, participants’
expectations for it to occur rises over time (Fig. 1D, left).
The weakly and strongly predictive conditions show the
same rise toward the end, but additionally contain a peak
at the intermediate foreperiod, due to the predictability
manipulation (Fig. 1D, middle, right). Of the two predict-
able hazard functions, we used only the hazard function
from the strongly predictive condition for the following
analyses. To obtain a maximal separation between the
hazard functions from the nonpredictive and strongly pre-
dictive conditions for the encoding models, we subtracted
the monotonic from the modulated hazard function, thus
removing the rise toward the end of the trial from the
modulated hazard function and keeping only the peak, as

continued
uniform distribution (nonpredictive) and two normal distributions with larger and smaller standard deviations (weakly and strongly
predictive). C, Response times over foreperiods (binned): response times were longer at short foreperiods and shorter at long
foreperiods. D, Hazard functions resulting from the foreperiod probability distributions. E, Response times over temporal hazard (i.e.,
the value of the hazard function at the time of target onset, on a log-spaced axis): response times were longest at the lowest hazard.
Shaded surfaces reflect SEM. F, Relative regression coefficients per participant obtained by modeling response times per condition
(panels from left to right) with the monotonic and modulated hazard functions as regressors.
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the most distinctive feature. We refer to this hazard func-
tion as the modulated hazard function.

To be used as regressors in the encoding models fitted
to the EEG data, the hazard functions had to match the
sampling rate of the EEG data (200 Hz). To achieve this,
we linearly interpolated the missing values. The resulting
hazard functions are depicted Fig. 2A.

Procedure
At the beginning of the session, participants were

briefed about the pitch discrimination task and the EEG
recording. There was no mention of any aspects of
timing before testing. After EEG preparation and the
measurement of the individual sensation level, partici-
pants performed a training of 38 trials (25 for the pitch
discrimination only plus 13 with the confidence rating
added). During training, foreperiods were drawn from a
uniform distribution to not induce any temporal predic-
tions. Then, six times three condition blocks were pre-
sented in random order: each condition was presented
once during the first and once during the second half of
the experiment (three consecutive blocks per condition
with random order between condition blocks, separated
by breaks of self-determined length (60 s at minimum).

There were 546 trials in total. After the experiment, par-
ticipants were debriefed and asked whether they had
detected the foreperiod manipulation. No participant
spontaneously reported the predictability manipulation
we applied. In a second question, the experimenter asked
participants whether they detected any differences in the
distributions of short and long foreperiods between
blocks. Two participants stated they did detect a differ-
ence, which could be a hint that they noticed the predict-
ability manipulation. In total, the experimental session
lasted �2.5 h, including EEG preparation.

EEG recording and preprocessing
Electroencephalographic data were continuously ac-

quired from 68 electrodes (Ag–AgCl), including 61 scalp
electrodes (Waveguard, ANT Neuro), one nose electrode,
and two mastoid electrodes. The electro-oculogram was
acquired to record eye movements, with two electrodes
placed horizontally to each eye and one placed vertically
to the right eye. A ground electrode was placed at the
sternum. All impedances were set �10 k�. The nose
electrode served as reference during recording. The data
were acquired with a sampling rate of 500 Hz and a
hardware-implemented passband of DC to 135 Hz (TMS
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Figure 2. Schematic depiction of the encoding model approach. A, One encoding model was computed per condition, by regressing
the two hazard functions (s in Eq. 2) on the time-domain EEG data (r in Eq. 2; example trials are displayed, set to 0 at target onset.
We obtained two temporal response functions (w in Eq. 2) per condition (right panel), one for the monotonic and one for the modulated
hazard function. B, In a second step, we predicted EEG signals (example trials displayed in the bottom right panel) from each of the
three models by convolving the hazard functions with the temporal response functions. Correlating the predicted and original EEG
signals allowed us to test which model provides the best fit with the original EEG data.
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International). EEG data were analyzed using the Fieldtrip
software package (versions 20160620, 20170501) for
Matlab (MATLAB 2016a, 2017a). First, we applied high-
and low-pass filtering to the continuous data using filters
from the firfilt plugin (Widmann et al., 2015). The high-
pass filter was a causal (one-pass-minphase) firws filter at
0.1 Hz with a transition bandwidth of 0.2 Hz. The low-pass
filter was a causal firws (one-pass, zero-phase) filter, with
a 100-Hz cutoff and 3-Hz transition bandwidth. After fil-
tering, data were re-referenced to linked mastoids, down-
sampled to 200 Hz, and demeaned. Next, the data were
epoched around the cue (onset of fixation cross and
noise) with a 4-s prestimulus and a 6.5-s poststimulus
interval. Artifact correction was performed in three steps:
visual inspection and removal of trials with excessive
artifacts occurring at all channels (on average 22.7 of 546
trials) and marking of bad channels that were excluded
from the independent component analysis (ICA) and in-
terpolated afterward (one each for four participants, zero
for all others); removal of eye blinks and muscular artifacts
by visually inspecting and then removing ICA components
(rejecting on average 26.6 of 64 components); and auto-
matic removal of trials with activity exceeding �150 �V
(on average 25.8 trials). For the encoding models, the
epoched data were low-pass filtered (sixth-order, two-
pass butterworth filter, 25-Hz cutoff).

Analyses of response times
All behavioral analyses were performed in R (version

3.3.0, R Core Team, 2016), using linear mixed-effect mod-
els from the lme4 package (Bates et al., 2015), as well as
plotting functions from the ggplot2 package (Wickham,
2009). Response times were log-transformed, and the
first block per condition was removed from the analyses
to allow participants to adapt to the new condition. Trials
with response times less or more than 2.5 individual
standard deviations were removed as outliers. To gener-
ally assess whether hazard affects response times, we
computed a linear mixed-effect model with one regressor
of interest (fixed effect), namely the value of the hazard
function for the respective condition at the time point of
the occurrence of the probe (0-centered), plus we mod-
eled a random intercept and random slope for the effect of
hazard over participants.

Second, to test the differential fit for each of the two
hazard functions in each condition, we computed one
linear mixed-effect model per condition, using only the
data from that condition and both the monotonic and
modulated hazard functions additively as fixed effect re-
gressors, plus a random intercept and random slopes for
both hazard regressors over participants.

To obtain F- and p-values for the fixed effects, we used
the summary function from the lmerTest package (Kuz-
netsova et al., 2016). As an estimate of effect sizes, we
report conditional and marginal R2 values (Nakagawa and
Schielzeth, 2013; Johnson, 2014), which indicate the vari-
ance explained by the full model and by the fixed effects,
respectively (obtained from the MuMIn package, Barto �n,
2017).

EEG analyses: forward-encoding models
To test whether the time-domain EEG signal tracks

temporal hazard, we used a forward-encoding model ap-
proach as previously described by Lalor et al. (2006;
2009), in which a time-resolved regressor (such as a
speech envelope, or in our case the hazard function), is
used to predict a time-resolved neural signal (EEG or MEG
time domain or frequency data) for a range of negative
and positive time lags between the two signals for each
trial, using ridge (or L2-penalized) regression (Hoerl and
Kennard, 1970; see also O’Sullivan et al., 2015; Biesmans
et al., 2017; Fiedler et al., 2017).

The approach is conceptually similar to cross-
correlation, but more robust to overfitting owing to usage
of regularized regression. For these analyses, we used the
Matlab-based multivariate temporal response function
(mTRF) toolbox (version 1.3, Crosse et al., 2016). The
resulting regression weights over lags, termed temporal
response function (TRF), w(�,n), can be understood as a
filter with which the stimulus s(t) is convolved to obtain the
response r(t,n) (Crosse et al., 2016):

r�t, n� � � w��, n�s�t � �� � ��t, n� . (2)

Here, 1. . .T reflects sampling points of r (EEG response,
measured at n channels), and s (stimulus) over time, and
� the samplewise time lag between s and r. For instance,
the EEG signal might show a relation to the sensory
stimulus not at lag 0 (i.e., simultaneously), but shifted
in time, for example with a lag of 100 ms relative to
the stimulus signal. Similar to correlation coefficients, the
relation can be positive or negative. �(t,n) reflects the
residual errors not explained by the model. w(�,n) can be
obtained by minimizing the mean squared error, which is
implemented via regularized ordinary least squares:

W � �STS � �mI��1STR , (3)

where S is the stimulus over time points t (rows), shifted
over lags � (columns). A regularization parameter (the
ridge parameter) is introduced to prevent overfitting. � is
multiplied with m, the mean of the diagonal elements of
STS, and with the identity matrix I, and added to the
covariance matrix STS (Biesmans et al., 2017). Here, we
used � � 4, which we had found to be the minimal value
to obtain stable TRF by visually inspecting the ridge trace:
the peak value of the TRF (at lag 0) over different values
for �.

To illustrate the overall shape of the temporal response
functions in an unbiased manner, before selecting specific
channels and time points, we computed global field
power over channels.

EEG encoding models of auditory events
In a first step, to ensure that the forward modeling

approach works even for our relatively short epochs, we
computed TRF for the encoding of the auditory events,
that is, the target tones embedded in ongoing noise. To
test for the encoding of the target tone onset in the EEG
signal, we created for each trial a time-domain stimulus
vector (from 0.5 to 3.5 s after cue-onset) by inserting the
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target tone into a vector of zeros, at the time point when
it occurred on that trial (as in Fiedler et al., 2017). We
computed stimulus envelopes by taking the absolute val-
ues of the analytic signal, then downsampled the signal to
the sampling frequency of the EEG data (200 Hz), low-
pass filtered (sixth-order, two-pass Butterworth filter,
25-Hz cutoff), and took the halfwave rectified first deriv-
ative (see Fig. 3).

EEG encoding models of temporal hazard
To assess whether and how the brain tracks temporal

hazard, we computed temporal response functions by
training three encoding models with the temporal hazard
functions as regressors (see schematic depiction in Fig.
2). We trained one encoding model on the data of each of
the three conditions (nonpredictive, weakly predictive,
and strongly predictive) by using the monotonic and mod-
ulated hazard functions jointly as regressors. This way, we
obtained per encoding model two TRFs: one TRF reflect-
ing the regression weights for the monotonic hazard func-
tion, and one TRF reflecting the regression weights for the
modulated hazard function. Second, to test whether the
EEG data from each condition encodes the temporal
hazard applying to each of the three conditions, we pre-
dicted the EEG responses from each of the three models
and tested the fit of the predicted with the original EEG
responses from all three conditions by computing Pear-
son correlation coefficients between predicted and origi-
nal data.

Encoding models were computed for single trials, al-
lowing us to take into account the variable intervals be-
tween cue and target. Only trials with foreperiods longer
than 0.65 s were used and cut from 0.5 s after cue onset
(to remove the cue-evoked activity). Importantly, we omit-
ted the response to the target tone by setting the EEG
signal to 0 after the time point of target onset on the given
trial, because temporal hazard is relevant only until the
occurrence of the expected event. Both the EEG data and
hazard function vectors were low-pass filtered (using a
sixth-order two-pass Butterworth filter with a cutoff fre-
quency of 25 Hz). The hazard functions (also cut from

0.5 s after cue-onset) were normalized by dividing through
their maximum, and the EEG data for each trial were
z-scored over the temporal dimension. The lags for the
temporal response function were chosen as –0.2 to 0.6 s.

To predict EEG data, we used a leave-one-out proce-
dure over trials, in which we predicted EEG data for one
trial by using the average TRF from all other trials in that
condition. To test whether the models are able to distin-
guish between the data from the three conditions, we also
predicted EEG data from the models trained on the other
two conditions. We thus obtained for each condition three
data vectors (per trial, participant, and channel) from the
models trained on the nonpredictive, weakly predictive,
and strongly predictive conditions, respectively. Next, we
computed per-trial Pearson correlation coefficients be-
tween the predicted EEG data and the original data to test
which of the three models provides the best fit with the
original condition data (referred to as “testing condition”
in the figures). Correlation coefficients were Fisher z-
transformed. To assess whether the correlations were
different from zero, that is, whether the models had any
predictive power, we computed parametric 95% confi-
dence intervals for the true correlation based on the
T-distribution.

Then, to assess relative fits between the models trained
on the data from the three different conditions, we
computed a “robust” index of Fisher z-transformed cor-
relations for each trial. To deal with different signs of
individual correlation values, we applied the inverse logit
transform to individual correlation values and then com-
puted the index as the normalized difference between the
correlation obtained from the model trained on the data
from the nonpredictive condition and the correlation
obtained from training on the data from the strongly pre-
dictive condition. A correlation index larger than zero
indicates a relatively better fit obtained by the model
trained on the nonpredictive condition, whereas a corre-
lation index smaller than zero indicates a relatively better
fit obtained by the model trained on the strongly predic-
tive condition. A correlation index of zero would indicate
that both models perform equally well. To test the signif-
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Figure 3. Encoding models trained on the target-onset envelopes. A, Preparation of stimulus envelopes: stimulus vectors were
computed by inserting the target tone into a vector of zeros at the time of its occurrence, extracting the envelope and subsequently
computing the halfwave rectified first derivative (black line). B, Temporal response functions to the target tone for all three
experimental conditions. The inset shows the topography at the negative peak (0.18–0.20 s). C, Source localization for the negative
peak of the temporal response function (averaged over conditions, 0.18–2.0 s), suggesting auditory generators.
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icance of the differences in correlation indices between
conditions, we performed a second-level cluster permu-
tation test on the indices obtained for each participant
over all electrodes (two-tailed, 	 � 0.025, 1000 permuta-
tions).

Source localization
To localize the peaks of the temporal response func-

tions from the sensor-level analyses, we performed an
additional source localization analysis. For the coregis-
tration of the EEG electrode positions we used, due to
the nonavailability of individual anatomic models for our
participants, a standard electrode layout, a standard
MRI template, and a standard head model (based on the
boundary-elements method) from FieldTrip software
(Oostenveld et al., 2003). Reconstruction of sources from
EEG data based on template anatomical models has been
successfully performed by previous studies from our own
group and others (for instance, Praamstra et al., 2006;
Bendixen et al., 2014; Strauß et al., 2014; Helfrich et al.,
2017).

Data were re-referenced to the average of all channels,
and individuals’ lead field matrices were calculated with a
1-cm grid resolution. For each participant, a spatial filter
was computed by applying linearly constrained minimum
variance (LCMV; Van Veen et al., 1997) beamformer di-
pole analysis to trial-averaged data (dipole orientation
was not fixed). Single trials where then projected into
source space, and a principle components analysis was
computed on single-trial 3D time course data (x,y,z direc-
tion) to extract the dominant orientation (first component).
Then, temporal response functions were computed on the
single-trial data from each source, exactly as described
for the sensor level data. For visualization, the source-
level peaks of the average temporal response functions
over participants were interpolated and projected onto a
standard MNI-brain. To illustrate the temporal response
functions in supplementary motor area, we extracted
single-voxel activity from the labels from the AAL atlas
(left and right supplementary motor area; SMA), imple-
mented in fieldtrip (Tzourio-Mazoyer et al., 2002) and
averaged over all voxels in the label.

Control analysis on resting-state data
As a control analysis, we computed the encoding mod-

els on time-domain EEG snippets from a resting-state
EEG data set. We used 3 min of eyes-open resting-state
recordings that had been acquired from 21 participants in
an independent study (Wöstmann et al., 2015, 2014). We

applied the same high- and low-pass filters to these data
as described above, re-referenced to linked mastoids,
downsampled to 200 Hz, and used ICA to remove eye
movements. Then, for each of the participants, we ran-
domly selected snippets from the resting-state data and
replaced the original trial data with those snippets. To
simulate 24 participants, we performed a second random
selection for 3 of the 21 resting-state participants. Encod-
ing models were computed for these data, exactly as
described for the original task data.

Results
Temporal hazard affects response times

To test whether response times vary with temporal
hazard, we first computed an overall linear mixed-effects
model jointly for all conditions, with hazard as continuous
regressor. As hazard, we input the value of the hazard
function used for that condition at the time point of target
occurrence (as depicted in Fig. 1E). Response times to a
given target were strongly influenced by hazard at target
occurrence, shown by a significant main effect of hazard
(F(1,23.1)� –4.2, p � 0.001; conditional R2 � 0.445,
marginal R2 � 0.003).

Furthermore, we tested whether response times indi-
cate a distinction between the three different hazard func-
tions used, relating to the approach used by Janssen and
Shadlen (2005) and Bueti et al. (2010). To this end, we
separated the data from the three conditions and used as
regressors the hazard functions from the nonpredictive
(monotonic hazard function) and strongly predictive con-
ditions (modulated hazard function). Note that the weights
obtained for each regressor indicate the influence of this
particular regressor on the data when all other regressors
are kept constant, that is, the unique variance it explains.
We expected that if observers updated their temporal
expectations between conditions, the relative weights ob-
tained for the two hazard functions should differ between
conditions.

For all three conditions, we obtained a negative weight
for the monotonic hazard function, showing that response
times decreased with rising hazard. The effect for the
monotonous hazard function was significant for all con-
ditions (marginally only in the weakly predictive condition;
p values are given in Table 1). On average, the weights for
the modulated hazard function were positive in the non-
predictive condition but negative in the two predictive
conditions, but the modulated hazard function did not
produce a significant effect in any condition.

Table 1. Linear mixed-effect model of response times.

Condition Nonpredictive Weakly predictive Strongly predictive
Monotonic hazard function –0.14 (0.06); p � 0.001 –0.07 (0.04); p � 0.06 –0.11 (0.04); p � 0.01
Modulated hazard function 0.04 (0.04); p � 0.29 –0.03 (0.02); p � 0.18 –0.03 (0.02); p � 0.27
Conditional R2 0.448 0.442 0.429
Marginal R2 0.007 0.001 0.002

Results of the three linear mixed-effect models computed separately to predict response times from the nonpredictive and weakly and strongly predictive
conditions with the monotonic and modulated hazard functions. The first value in each cell gives the parameter estimate (i.e., the unit change in log response
times by this factor when keeping all other factors constant) and its standard error in parentheses. P-values indicate which hazard functions significantly cor-
related with the response times from the respective condition. Conditional and marginal R2 values indicate the variance explained by the full model, and by
the fixed effects, respectively.
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As shown in Fig. 1F, the relative contributions of the
modulated and monotonic hazard functions changed over
conditions, as indicated by an ANOVA computed on sin-
gle subject’s ratios between the weights for the modu-
lated and monotonic hazard functions (F(2,69) � 19.98, p
� 0.0001). Post hoc tests revealed significant differences
between the nonpredictive and both predictive conditions
(p � 0.001, fdr-corrected).

In sum, these results show that while the monotonic haz-
ard function affected response times in all conditions, the
relative contribution of the monotonic and modulated hazard
functions differed between conditions, suggesting that re-
sponse times do distinguish between the different hazard
functions.

Temporal response functions of auditory stimulus
encoding

To assess the neural encoding of target tones and
ensure the overall applicability of forward-encoding
models to these data, we trained encoding models on
the time-domain EEG data from all conditions, using
target-onset envelopes as regressors. The resulting
trial-averaged TRFs (shown in Fig. 3B) show a negative
deflection around lag 180 ms, whose topography and
source reconstructions suggests sources in auditory
areas (Figure 3C). The TRF showed no condition differ-
ences within the range of lags applied. This initial anal-
ysis proved that even with relatively short epochs, the
approach can reveal the encoding of auditory informa-
tion.

Temporal response functions reveal the neural
tracking of temporal hazard

Our main analysis sought to test whether the time-
domain EEG signal contains signatures of temporal haz-
ard. We computed one encoding model per condition (per
participant, trial, and channel), using as regressors the
monotonic and modulated hazard functions obtained
from the nonpredictive and strongly predictive conditions
(Fig. 4A). For each encoding model (i.e., per experimental
condition), we obtained two TRFs, one for each of the two
hazard functions (as shown in Fig. 4B). The TRF obtained
from the monotonic hazard function showed a peak at lag
zero in global field power, which results from a negative
deflection with a fronto-central scalp distribution in all
conditions. A cluster-permutation test on the single-
subject TRFs (from –0.05 to 0.05 s) revealed a marginally
significant greater negativity for the peak for the TRF
trained with the data from the nonpredictive compared to
the predictive condition (0.035–0.05 s; p � 0.09).

The TRF for the modulated hazard function showed no
peak at lag zero but, in global field power, a stronger posi-
tivity at negative lags and a rather a sustained difference
between conditions starting at a lag of �150 ms. However,
significant differences (testing for all latencies from –0.1 to
0.5 s) were found only for the later lags: between 0.28 and
0.32 s (p � 0.01) and 0.42 and 0.47 s (p � 0.03).

Encoding models of temporal hazard distinguish
between experimental conditions

To assess the relative fit of the three encoding models
trained on the data from each condition, we predicted
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Figure 4. Temporal response functions (TRFs) for the encoding of temporal hazard, separately for the different hazard components. A,
Hazard functions, as used as regressors for the encoding models. Top: monotonic hazard function (orange); bottom: modulated hazard
function (violet). B, Global field power (GFP) of the TRF for the monotonic (top) and modulated (bottom) hazard function. Shaded areas
indicate SEM over participants. Topographies show the scalp distribution of the TRF at lag 0 for the monotonic hazard function and lags
–0.1 to 0 s and 0.2 to 0.3 s for the modulated hazard function. C, Average temporal response functions for the monotonic (top, electrode
Fz) and modulated (bottom, electrode Cz) hazard function. Insets show statistically significant differences between the TRF for the three
conditions.
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EEG data based on each of the three models (see exam-
ple in Figure 2B). As a measure of prediction accuracy, we
then correlated each trial of predicted EEG with the orig-
inal EEG data. As shown in Fig. 5A, predicted and original
EEG data correlated positively, around r � 0.07 on aver-
age. As shown by the confidence intervals (colored verti-
cal bars in Fig. 5A), the correlations were significantly
different from zero (and from the correlations obtained
with the resting-state data, gray vertical bars in Fig. 5A).

To assess the relative fits of the three different models
trained on the data of the three conditions, we computed
correlation indices, contrasting for each trial the fit of the

original EEG data with the predicted EEG signals from the
models trained on the nonpredictive versus strongly pre-
dictive conditions. The resulting index is positive when the
original data fits better with the predicted data from the
model trained on the nonpredictive condition, and nega-
tive when the predicted data fits better with the data from
the strongly predictive condition. As shown in Fig. 5C for
the nonpredictive condition the average index showed
relatively better fits for the model trained on the nonpre-
dictive condition with the original data from that condition,
and respectively between the test data from and the
model trained on the strongly predictive condition. For the
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Figure 5. Relative model fits. A, Mean (horizontal bars) and 95% confidence intervals (colored vertical bars) for the correlation
between the original EEG data from nonpredictive (np), weakly predictive (wp), and strongly predictive (sp) conditions (testing
condition, displayed in the horizontal panels) and the predicted EEG from the models trained on the nonpredictive and weakly and
strongly predictive conditions (on the x-axis and color-coded). The gray vertical lines display the confidence intervals obtained from
the resting-state data. B, Scatterplots, displaying for each condition (testing condition, vertical panels) single participants’ correlations
between the data from that condition with the data predicted by the model trained on the nonpredictive (x-axis) versus strongly
predictive (y-axis) conditions. C, Relative correlation indices: positive and negative values indicate better fits between the original data
per condition (x-axis) and the data predicted by the model trained on the nonpredictive and strongly predictive condition, respectively.
The insets show the topographic distribution of the indices and the t values for the statistical comparison of the nonpredictive and
the strongly predictive condition.

New Research 10 of 17

March/April 2018, 5(2) e0017-18.2018 eNeuro.org



weakly predictive condition, the index is at approximately
zero, indicating no conclusive evidence for either model.
A two-level permutation cluster test on individual partici-
pants’ correlation indices per trial confirmed a significant
difference between the correlation indices from the non-
predictive versus the strongly predictive condition (p �
0.002). In sum, the differences in correlation indices re-
vealed that the three encoding models are sensitive to
condition differences in the time-domain EEG data.

Encoding of instantaneous temporal hazard in the
SMA

To assess the anatomic sources of the temporal re-
sponse functions, we computed the encoding models on
EEG data projected into source space (see Fig. 6). This
analysis revealed that the negative peaks of the TRF for
the monotonic hazard functions found in the sensor space
data originate in the bilateral SMAs and the adjacent
paracentral lobule (Fig. 6A, left).

There was no clear peak for the TRF for the modulated
hazard functions in the sensor space data. In source
space, the strongest activation at lag 0 was originating
from the precuneus, but only in the strongly predictive
condition (Fig. 6A, right). To post hoc visualize the TRF
from the SMA over lags, we then extracted activity from
the SMA in source-space for both hazard functions and all
three conditions. The TRF for the modulated hazard func-
tion showed a stronger positivity from lags –0.05 to 0 s
and an adjacent negativity (lags 0 to 0.1 s) only for the
strongly predictive condition (Fig. 6B, C). Correlations and
correlation indices computed on the data extracted from
the SMA showed a pattern similar to that of the sensor-
level data, namely better fits between the model trained
on the nonpredictive condition with the data from that
condition, and, respectively, better fits between the model
trained on the strongly predictive condition with the data
from that condition (Fig. 6C,D), but the difference was not
significant (T(23) � 1.64, p � 0.11), indicating that the
SMA is not the only region contributing to the distinction
between the different hazard functions. The peak sources
for the positive differences in correlation indices (shown in
Fig. 6C, D) were in the bilateral SMA, precuneus, and
medial temporal lobes.

Control analysis: encoding models on resting-state
data

To assess the validity and specificity of the encoding
model approach, we computed the same encoding mod-
els (i.e., using the same set of hazard function regressors)
on time-domain EEG snippets from a resting-state data
set. Fig. 7 shows the TRFs obtained from these data. The
TRF for the monotonic hazard function has a peak in
global field power at lag 0 s, albeit weaker than with the
original data and with much less clear topographies. The
TRF for the modulated hazard function showed a sus-
tained difference in global field power at later lags.

The (at least partial) resemblance between the TRF
obtained for the original condition data and the resting-
state data confirms that a forward-encoding model can
pick up unspecific activity, and that the regressors used
for the model (here, the hazard functions) do influence the

shape of the TRF to a substantial degree. Most impor-
tantly, however, when predicting EEG data from the three
models trained on the resting-state data and correlating
the predicted and original resting-state data, the resulting
correlations did not differ significantly from zero, and the
correlation index did not differ between conditions (see
Fig. 7D, E). This control analysis rules out the possibility
that the results obtained with the actual task EEG data
were due to generic properties of EEG and encoding
models only. In particular, one could worry that the un-
equal distributions of foreperiods in combination with the
zeroing of the data after the end of the foreperiod would
lead to differences in the model fits between conditions.
However, if this were the case, it should also surface in
this control analysis, which it does not.

Discussion
Here, we have shown that the human EEG tracks tem-

poral hazard, even in a sensory task to which time is not
a task-relevant dimension. Forward-encoding models
trained to predict the recorded EEG signal from temporal
hazard were able to distinguish between experimental
conditions that differed by their unfolding of temporal
hazard over time. The SMA, a key region in timing and
time perception, appeared as the primary source of this
tracking signal in a brain-wide search for likely generators
of these encoding-model response functions. Our find-
ings show that the mathematical concept of temporal
hazard is of use to explain human behavior in an implicit
foreperiod paradigm, and that temporal hazard bears
tractable signatures in the human EEG. From a method-
ological point of view, applying the encoding model ap-
proach to track a stimulus as abstract as temporal hazard
is a novel but promising approach to study temporal
processing, as it allows one to map time-resolved pro-
cesses to the EEG signal.

Temporal hazard shapes response times
First evidence for the relevance of the concept of tem-

poral hazard to cognitive processing comes from the
analysis of response times of the pitch discrimination
task. Response times correlated with temporal hazard:
the higher the probability of a stimulus to occur at the time
point of its occurrence, the faster the response (Fig. 1E,F;
Table 1). This finding replicates the well-established
variable-foreperiod effect (Niemi and Näätänen, 1981),
which holds that longer foreperiods, genuinely associated
to larger hazard, evoke shorter response times.

Furthermore, response time analyses per condition
provided empirical evidence that the monotonic and mod-
ulated hazard functions affected response time differen-
tially. The relative contributions of the modulated and
monotonic hazard functions to the variation of response
times changed over conditions (Fig. 1F): for the mono-
tonic hazard function, we obtained negative (and signifi-
cant) weights for all conditions, showing that response
times in all conditions decreased with higher values of the
monotonic hazard function (i.e., with elapsed time). For
the modulated hazard function, we observed a distinction
between conditions: we obtained nominally (but not sig-
nificantly) positive weights for the nonpredictive condition,
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that is, an increase in response times at the peak of the
modulated hazard function, which suggests that the mod-
ulated hazard function does not explain well the response
times in this condition. For the two predictive conditions,
we obtained negative weights that were smaller than
those for the monotonic hazard function, showing that the
response times decreased at the peak of the modulated
hazard function, but also toward the end of the interval
where the monotonic hazard function rises. Despite the

dominance of the monotonic hazard function in all condi-
tions, these results suggest that the modulated hazard
function affected response times differently in the two
predictive conditions compared to the nonpredictive con-
dition. Note that, in contrast to the EEG analyses, the
response time analyses used one single value from the
hazard function for each trial, namely the one at target
onset, not the full time-resolved hazard function as used
in the EEG analysis, which might not be enough informa-
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hazard function (orange); bottom, modulated hazard function (violet). B, Global field power for the monotonic (top) and modulated
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tion to distinguish fully between the different levels of
temporal predictability.

In sum, response time in all instances is affected by
rising temporal hazard due to the passage of time, and
additionally captures modulated temporal hazard. This set
of results lends validity to our manipulation of temporal
hazard (for previous findings in this respect, see Karlin,
1966; Janssen and Shadlen, 2005; Bueti et al., 2010;
Todorovic et al., 2015; Tomassini et al., 2016). While
previous studies had mostly varied the average foreperiod
interval, the present data assert that response time also
distinguishes between different degrees of temporal pre-
dictability varied around the same average foreperiod.

Encoding models distinguish between the different
conditions of temporal hazard

To test how the brain tracks temporal hazard, we ap-
plied an encoding model approach (Lalor et al., 2006,
2009; Naselaris et al., 2011; Mesgarani et al., 2014;
Holdgraf et al., 2017) to track temporal hazard in human
time-domain EEG, recorded during an auditory foreperiod
paradigm (Herbst and Obleser, 2017). The encoding mod-
els could distinguish between the different conditions of
temporal hazard (see Fig. 5), showing that participants
used the implicit variations of foreperiods in the task.

Our results are broadly in line with a number of studies
showing that temporal hazard shapes behavior and neural
responses in monkeys and humans, underlining the rele-
vance of this mathematical concept in understanding
cognitive processes. In monkeys, electrophysiological ac-
tivity recorded from the lateral intraparietal cortex (area
LIP) correlated with temporal hazard during the time of
anticipation of the go-signal in a set-go (Janssen and
Shadlen, 2005) and a temporal reproduction task (Jazayeri
and Shadlen, 2015). Notably, Janssen and Shadlen found
that the best-fitting representation of temporal hazard and
neural recordings was provided by a smoothed version of
the hazard function that takes into account the scalar vari-
ability of timing (“subjective hazard”). Applying such a sub-
jective hazard function did not improve model fit in the
present data. Probably, this is due to the relative similarity of
the hazard functions we used (same mean), as well as the
lower signal-to-noise ratio of human EEG compared to
single-cell recordings in monkeys.

Further evidence for the relevance of temporal hazard to
cognitive processing comes from studies recording fMRI
from human participants, providing evidence for a represen-
tation of temporal hazard in visual sensory areas during the
foreperiod interval (Bueti et al., 2010), and in the responses
to the target events in the SMA (Cui et al., 2009). Because of
the temporal resolution of the bold signal, these studies
used much longer foreperiods. With respect to human EEG,
Trillenberg et al. (2000) and Cravo et al. (2011) showed that
before target onset, EEG activity distinguishes between dif-
ferent conditions of temporal hazard. Importantly, these de-
signs used strongly discretized foreperiod distributions, with
very few foreperiods over all conditions, allowing the com-
parison of averaged activity over conditions, whereas our
approach allowed us to model single-trial data. All of the
above-cited studies used a set-go task in which participants

had to make a speeded response as soon as the go-target
appeared, or even an explicit timing task (Jazayeri and
Shadlen, 2015), both of which likely further promoted the
use of timing strategies. In contrast, we used a sensory
discrimination task, in which the temporal aspects were
strictly implicit (for discussion, see also Herbst and Obleser,
2017). Thus, our results show that participants extract the
temporal probabilities in the different conditions and use
temporal hazard when performing the task.

Neural signatures of tracking temporal hazard
Importantly, and in complement to the previously pub-

lished analyses of this data set, the encoding model
approach allowed us to directly assess how the human
brain encodes temporal hazard for each of the three
conditions differing by their hazard function. From the
encoding models, we obtained one TRF per condition,
whose deflections from zero represent a direct relation-
ship between the EEG time-domain data and the hazard
functions, and can thus be interpreted as the neural cor-
relates of temporal hazard.

The monotonic hazard function, describing rising haz-
ard due to the passage of time, revealed the most clear-
cut neural signature: a near-instantaneous (i.e., zero-lag)
deflection in the response function, peaking at fronto-
central sensors. This negative deflection was found in the
TRF trained on all three conditions, showing that hazard
due to the passage of time is tracked in all conditions
regardless of the manipulation of temporal predictability.
The sign and sources of this peak, localized to the bilat-
eral SMA and adjacent regions, strongly argues for a
relation to the well-described contingent negative varia-
tion (CNV; Walter et al., 1964) thought to emerge from the
SMA. The CNV has often been described in explicit timing
tasks (Macar et al., 1999; Macar and Vidal, 2004; Praam-
stra and Pope, 2007; Wiener et al., 2010; Merchant et al.,
2013; Herbst et al., 2014). Note, however, that we did not
observe a clear CNV in the event-related potential analy-
sis presented in Herbst and Obleser (2017), which shows
that the encoding model approach exhibits higher sensi-
tivity.

SMA activity, or a CNV, has also been described for
implicit timing tasks (Matsuzaka and Tanji, 1996; Akkal
et al., 2004; Cui et al., 2009). In monkey electrophysiology,
ramping activity in the pre-SMA and SMA during the
foreperiod was found when the onset of a target was
predictable in time (Matsuzaka and Tanji, 1996; Akkal
et al., 2004). Mento et al. (2013) observed a “passive
CNV” in an implicit timing task, but reported premotor
cortex as its primary source, rather than the SMA, which
might be explained by the rhythmic oddball design used
in that study (see also Mento, 2013). It is also important to
note that neither their study nor ours used individual MRI
scans for the source localization, and thus such fine-
grained regional divergence should be interpreted with
caution. Nevertheless, our findings converge with the lit-
erature on temporal processing and provide new evi-
dence that temporal hazard is tracked by the SMA in a
strictly implicit timing task.
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The sensor-space TRF for the modulated hazard func-
tion showed no clear peaks, hence did not allow us to
extract a distinct neural correlate of strong predictability.
We found a significant difference between the TRF from
the nonpredictive and predictive conditions at later lags,
which, however, also occurred in the TRF trained with
resting state data and therefore seems to be related to the
shape of the hazard function rather than the cognitive and
neural processing thereof. The source space analysis of
the TRF revealed activity in the precuneus around lag
zero, only for the strongly predictive condition. This points
toward an involvement of the precuneus in temporal pre-
diction, in line with a previous study reporting enhanced
precuneus (and default mode network) activation in a
rhythmic temporal prediction task (Carvalho et al., 2016).
Extracting only the data from the SMA in a post hoc
analysis revealed a positive-to-negative deflection around
lag zero for the TRF of the modulated hazard function in
the strongly predictive condition only (see Fig. 6B,C),
which tentatively suggests that the SMA also processes
the modulation of temporal hazard in that condition in an
instantaneous way, but might not be the dominant region
to do so.

In sum, the TRF for the monotonic hazard functions
revealed a quasi-instantaneous neural correlate of track-
ing hazard, localized in the SMA, whereas the TRF for the
modulated hazard functions revealed no singular feature
well defined in space and time. In sum, our findings
converge with the literature on temporal processing and
provide new evidence that temporal hazard is tracked by
the SMA in a strictly implicit timing task. The successful
distinction between conditions by the encoding models
might thus result more from the decreasing applicability of
the monotonic hazard function over conditions (in line
with the by-trend stronger negative peak for the nonpre-
dictive condition) than from the distinct encoding of the
predictive hazard function.

Methodological relevance of the encoding model
approach to abstract, time-resolved stimuli

Our results reveal the usefulness of the forward-
encoding model approach applied to a seemingly ab-
stract, mental representation such as temporal hazard.
The approach has previously been applied successfully to
encode the attentional processing of sensory stimuli (Ding
and Simon, 2012; O’Sullivan et al., 2015; Fiedler et al.,
2017; Puvvada and Simon, 2017) and semantic process-
ing of speech streams (Broderick et al., 2018; Di Liberto
et al., 2018), but never to a purely mental stimulus such as
temporal hazard. Modeling EEG data with a time-resolved
regressor allows us to study how the brain maintains
representations of complex and dynamic features such as
temporal hazard. Furthermore, the approach of comput-
ing TRF for single trials can take into account only the
foreperiod interval during which timing is expected to
occur, between the cue and the target onset. These in-
tervals vary over trials and conditions, which is a chal-
lenge for standard approaches of EEG data analyses
involving averaging.

To validate our approach, we have provided two
control-level encoding models. One is for the sensory
stimulus from the EEG data recorded during the task to
show that the encoding model approach is sensitive: TRF
(Fig. 3) to auditory target onsets replicated target-evoked
event–related potentials shown previously for these data
(Herbst and Obleser, 2017). The second control-level en-
coding models used the temporal hazard of interest as
regressor but were trained on resting-state instead of the
actual task data (Fig. 7). Thus, the encoding model ap-
proach is also specific, in that it fails when applied to
surrogate or unrelated data. The shapes of the TRF com-
puted on these resting-state data show that the regres-
sors used for the encoding model partially affect the TRF,
calling for caution in the interpretation of their shape
without performing a model comparison procedure.

Conclusions
Using an implicit probabilistic foreperiod paradigm,

forward-encoding models have allowed us to quantify the
tracking of temporal hazard in the human EEG. Our results
suggest that the neural correlates of modulated temporal
hazard only partially overlap with those of monotonically
rising hazard due to the passage of time. The monotonic
hazard function revealed a quasi-instantaneous neural
correlate of tracking hazard, whereas the modulated haz-
ard function revealed no singular feature well-defined in
space and time. Source localization and a set of control
analyses capture the functional and anatomic specificity
of these effects, with a key role for the SMA. The model-
driven approach used here illustrates how implicit varia-
tions in temporal hazard bear tractable signatures in the
human electroencephalogram.
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