
Trends in
Opinion

Metacognition in the listening brain

NeurosciencesOPEN ACCESS
Highlights
Metacognition is key to understanding
and modelling human auditory percep-
tion and communication, particularly in
complex environments.

The proposed ‘meta-listening’ frame-
work is based on Bayesian models of
perception, exploring how the precision
of neural encoding might drive auditory
metacognition.
Jonas Obleser 1,2,*

How do you know you have heard right? Metacognition, the ability to assess and
monitor one’s own cognitive state, is key to understanding human communica-
tion in complex environments. However, the foundational role of metacognition
in hearing and communication is only beginning to be explored, and the neuro-
science behind it is an emerging field: how does confidence express in neural
dynamics of the listening brain? What is known about auditory metaperceptual
alterations as a hallmark phenomenon in psychosis, dementia, or hearing loss?
Building on Bayesian ideas of auditory perception and auditory neuroscience,
‘meta-listening’ offers a framework for more comprehensive research into how
metacognition in humans and non-humans shapes the listening brain.
The roles of alpha (∼8–12 Hz)
oscillatory activity and cortical
excitation-to-inhibition balance in
shaping metacognitive outcomes
in the auditory sensory modality
are highlighted.

Subjective confidence judgements in
hearing often align with objective per-
formance measures, but there are
significant instances of dissociation,
particularly in older adults and in individ-
uals with auditory hallucinations.
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Current limits in explaining listening behaviour
Imagine yourself on a busy train platform. You hear your name being called out. How confident are
you that you have heard correctly? Should you turn and look for who is calling? This question – ‘Did
I hear this right?’ – is a question ofmetacognition (see Glossary), that is, the knowledge of one’s
own cognitive processes [1]. As listeners navigate a noisy world, perceiving, deciding, and behav-
ing in the face of this perceptual uncertainty calls on their metacognitive or metaperceptive abilities.

A ubiquitous phenomenon is human perceivers’ ability to report their confidence in a perceptual
decision [2]. Psychologists have recognised this early on [3] and began using confidence rating
scales (e.g., 0–3) still in use today. More generally, judging or monitoring one’s own hearing
(‘I did not understand this’, ‘this is too effortful to listen to’) represents a metapercept, as it results
from the listener ‘reading out’ their internal perceptual state.

Under a Bayesian model of perception (Box 1), confidence aligns closely with perceptual
precision: Confidence should be proportional to the precision (i.e., inverse of the variance) of
the posterior probability for that percept. Analogously, in artificial neural networks (Box 2), confi-
dence or precision is sometimes expressed as the entropy across possible candidates, with low
entropy expressing high precision or high confidence [4]. More formally, confidence can be com-
putationally defined as a conditional probability: namely, the (subjective) probability that a percep-
tual decision has been correct, given this decision and the according evidence [5].

Such metaperceptual judgements have immediate as well as more remote consequences for
behaviour. In other words, it does make a difference whether you do, or do not, ‘trust your
ears’. Audition is a particularly fleeting, time-dependent sensory modality, and a listener’s confi-
dence in what they have just perceived is integral to their ensuing behaviour. For instance,
when a person with hearing loss lacks confidence in her perceptual abilities, she may ask more
often for a sentence being heard to be repeated. Another, more confident or overconfident
listener might be less inclined to seek such repetition.

Overconfidence has been identified as a potentially adaptive hallmark of human decision-making
and might be evolutionary adaptive [2]. In auditory perception, overconfidence can be observed in
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Box 1. Auditory percepts as a Bayesian compromise

Within a Bayesian framework of perception, a listener’s prior assumptions (prior), the ascribed likelihood of the incoming
sensory evidence under these assumptions (likelihood or sensory evidence), and the resulting a posteriori percept are
not fixed values. They all reflect form probability distributions (Figure I). These distributions of belief extend over a contin-
uum of possible true states (‘unknown parameters’) in the environment, such as sound frequency or a prey’s location in
space. The height of the posterior distributions at any point represents the listener’s belief in that value being the true value
generating the percept. This is easily seen for one-dimensional phenomena, such as the exact tonal frequency or the az-
imuth location of prey in space. Applying this concept to more acoustically complex and multidimensional percepts as a
human voice requires some extrapolation, but the underlying principle remains.

In Bayesian terms, a ‘flat prior’ renders a wide range of possible true states to be of almost equal probability. Conversely, a
‘strong’ or precise a priori belief is characterised by a narrow and tall prior distribution, where a small range of possible true
states carries high probability or strongbelief, while other potential true states are deemedmuch less likely or nearly impossible.

Relevant to auditory perception, the mathematics of Bayesian perception dictate that (i) the resulting a posteriori percept
will always be more precise than either the prior assumption or the sensory evidence alone (middle panel of Figure I); and
(ii) higher precision in either of these will translate directly into a stronger impact on the resulting percept (Figure I).

precise auditory evidence ×
unchanged prior assumptions
= precise percept near evidence

precise prior assumptions ×
unchanged auditory evidence 
 = precise percept near prior

possible true states 
of environment

prior
assumptions

auditory
evidence

×
auditory percept = 
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Figure I. Auditory perception as a Bayesian compromise. Note how precise priors (i.e., strong assumptions; orange)
and precise sensory evidence (e.g., high-acuity neural encoding in the auditory periphery; cyan) can both have a strong impact
on the resulting auditory percept (i.e., the mode of red distributions) and its precision (i.e., the inverse of the red distribution’s
variance). This degree of precision can inform the listener’s subsequent metacognitive confidence judgement: both the left
and right scenario should result in a more precise posterior and therefore higher confidence than the middle one.
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Glossary
Bayesian models of perception:
percepts are well captured by a
multiplicative process or ‘perceptual
compromise’ that balances the
perceiver’s prior belief or expectation
with how probable the incoming sensory
evidence is under this prior belief (i.e., the
likelihood).
Electrocorticography (ECoG): the
recording of electric brain activity directly
from inside the skull, usually with grids of
electrodes placed temporarily on or
under the dura mater in severe cases of
epilepsy before neurosurgery.
Electroencephalography (EEG): a
non-invasive technique for recording
electric brain activity from electrodes
placed on the scalp.
Metacognition: a family of cognitive
processes acting upon cognition itself,
for example, monitoring and evaluating
one’s own perceptions, judgements,
emotions, or behaviours.
Metacognitive efficiency: an agent
when making metacognitive decisions
can make more or less efficient use of
internal perceptual decisions. If both
decisions are expressed in terms of
sensitivity measures d′ and meta d′, the
so-called m-ratio (meta-d′ divided by d′)
expresses metacognitive efficiency.
Oscillation: a rhythmic signal with a
defined time scale (frequency),
amplitude, and phase. The phase
expresses the position of peaks (and
troughs) relative to some reference.
Oscillations occur in the context of
auditory perception in neural signals or in
time series of behavioural reports.
some individuals in response to false alarms, that is, they react to illusory sensory stimuli with unwar-
ranted high degrees of certainty. Similar behaviour has recently been demonstrated in rodents
exhibiting hallucination-like percepts [6]. Thus, an individual with healthy hearing but certain percep-
tual dispositionsmight tend to ‘hear voices’where there are none or have auditory percepts that their
peers do not share (see ‘How does metacognition relate to aberrant auditory perception?’ later).

In light of this ubiquity and relevance of metacognition to hearing and human behaviour in
complex environments, it is somewhat surprising that auditory neuroscience has not taken up
and explored the role of metacognition to equal extent as some other domains of cognition.
Metacognitive research and its elaborate models of confidence have often relied on visual
phenomena to hone their predictions [5,7,8] (but see [9,10]). Meanwhile, the growing literature
on neural mechanisms of audition, speech, and communication holds many hints to a lurking,
often underexplored role of metacognition. This article aims to highlight these developments
and promote work towards a testable framework of ‘meta-listening’.

What is meta-listening, and why does it matter?
Metacognition is a field of intense debate, and definitions of metacognition vary across the litera-
ture. For the current article, the following definition, intended to be broadly in line with current
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Box 2. Metacognition for the listening machine

Artificial neural networks (ANNs) are now nearly omnipresent, including in auditory and verbal communication settings
(e.g., in cars and smartphones, and not least in assistive systems in critical sectors like healthcare and security). This calls
for systematically testing the validity of different models of confidence in emulating behavioural and neural processes of
human cognition [98].

Amidst the fast progress in ‘machine listening’ and the increasingly ubiquitous role of auditory or language-based human–
machine interactions [99], we lack a good model of how forms of ‘joint’metacognition between a listening machine and a
human could be achieved. How could rudimentary metacognitive abilities for machine listening be implemented?

The advent of computationally powerful and effective, but mostly ‘black-box’ generative transformer architectures as in
ChatGPT [100] highlight the need for transparent, ‘explainable’, and therefore safe-to-use algorithms [101,102]. Interest-
ing new leads in this respect are endeavours to ‘open the box’ and scrutinise the layer-specific representations in lan-
guage-predictive artificial neural networks by a joint analysis with humans’ neural representations and communication
behaviour [103–105] .

Why is this relevant for future work on metacognition and confidence in listening? ‘Conventional’ artificial-intelligence func-
tionalities in hearing-aids, chatbots, and car navigation systems can all be considered to rest on ‘first-order’ perceptual
judgements, utilising andmaximising the network’s prediction accuracy. Very few, if any, state-of-the-art machine-learning
approaches to speech recognition or natural language processing have thus far been aimed at explicitly implementing
levels of second-order judgement and metacognitive efficiency in these artificial agents. The question remains how accu-
rately the machine can diagnose its own (in-)accuracy (but see in vision, e.g., [106]).
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consensus, will be used. Readers are referred to recent reviews for more detailed discussions, for
example, [5,7,11].

As a working definition, ‘meta-listening’ summarises those neural and psychological mechanisms
that allow a listener (i) to be aware of some aspect or feature of their auditory perception; (ii) to as-
sess or ‘read out’ and judge this perceptual aspect; and accordingly (iii) to use this information
about their percept (i.e., not only the percept itself) to report on it and to act on it.

How could suchmetaperceptual read-outs be neurobiologically implemented (Figure 1, Key figure)?
Can the neurobiology of auditory metaperception help us predict when a listener will be subjectively
performing well (i.e., experiencing ‘listening success’)? This explanatory gap matters:
metacognitive abilities might prove relevant to communication satisfaction, to compliance in hear-
ing rehabilitation, and to help-seeking behaviour more generally. Also, the increasingly recognised
value of hearing loss as a key, potentially modifiable risk factor for two disorders involving
metacognitive monitoring, namely dementia [12,13] and psychosis [14], call for a more compre-
hensive understanding of metacognition in audition.

Dissociations of objective and subjective listening success
Metaperceptual and perceptual processes can be differentiated using concepts from signal detec-
tion theory [15]. This allows us to distinguish ‘type I’ or first-order, perceptual decisions from ‘type II’
or second-order, metaperceptual decisions [15,16]. First-order perception involves a decision
criterion or bias (e.g., a listener’s level of evidence required to perceive a sensory signal) and sen-
sitivity (e.g., how segregated the representation of the sensory signal is from sensory noise) [17].

The signal-detection framework can be applied to second-order perception as well: a listener’s
metacognitive bias reflects how much perceptual evidence they require to feel confident in a
given percept. Their metacognitive sensitivity indicates how well they distinguish correctly per-
ceived signals from false alarms. Following from this, metacognitive efficiency is sometimes
quantified by normalising an individual’s metacognitive sensitivity on their first-order sensitivity
(m-ratio) [8,18].
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Key figure

Auditory perception, the integration of perceptual priors with auditory
evidence, and its relation tometacognitive assessments of own perception
(‘meta-listening’)

• Local E:I balance ?
• Slow oscillatory phase ?
• Peripheral hearing loss ?
• …

Accumulating
metaperceptual evidence?

Perceptual decision
(first-order)

Trial time

Metaperceptual decision
(second-order)

Accumulating
auditory evidence

“I haven’t heard right.”

“I heard a voice.”

(A)

(B)

• Alpha/beta oscillatory dynamics ?
• Neuromodulation (NE, DA) ?
• Psychological traits ?
• …

Auditory prior precision

Auditory percept precision

Auditory evidence precision

S
ub

je
ct

iv
e

pe
rf

or
m

an
ce

Objective
performance

Optimal
metacognitive
sensitivity

Over-
confidence

50 100%

100%

=

Second-order
(‘metalistening’)

Separated or 
integrated?

Perceptual
(first-order,
‘objective’)

Prio
r

se
ns

or
y

ev
ide

nc
e

Percept
(posterior)

Perceptual
evidence

Metaperceptual
(second-order,
‘subjective’)

TrendsTrends inin NeurosciencesNeurosciences

Figure 1. (A) In human and non-human audition, the spectro-temporal or spatial accumulation of sensory evidence (shown in
cyan colour) allows perceptual decisions (e.g., detecting a voice; localising prey; or discriminating conspecific vocalisations
from background noise; ‘first-order’ percepts, shown in red). Also, both humans and non-human animals show evidence
of a separable, metacognitive level of monitoring and reporting about this perceptual process (here termed ‘meta-listening’;
purple), for example, statements of confidence in the perceptual decisions just taken. There is debate what are the most im-
portant sources of evidence for this second-order, meta-perceptual judgement (sketched here as a separate stream of
metaperceptual evidence accumulation for illustration only; see also purple arrows in (B). For detail and debate see, for exam-
ple, [19,97]). (B) A common framework conceptualising any auditory percept (red) as a multiplicative result of prior expecta-
tions (orange) and the probability of incoming acoustic evidence under these assumptions (‘likelihood’, cyan), and their
respective precision (=1/variance). Various neurobiological and psychological factors likely modulate these precisions and
shape auditory perception. See main text for references. Meta-perceptual processes are directly influenced by the precision
of the auditory percept itself (dashed distributions highlight the possible variation in precision) and allow for ‘subjective’,
second-order reports or experiences of listening performance. Middle panel and inset: this second-order Bayesian process
of ‘meta-listening’ can align or misalign with ‘objective’, first-order listening performance (i.e., exemplary individual shown).
Measures of metacognitive sensitivity aim to quantify this agreement (e.g., [8,16]). See text for sources of overconfidence
in listeners.
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There is ongoing debate and not enough evidence yet on whether the first-order, perceptual ev-
idence accumulation and its second-order, metacognitive evidence accumulation are separate
processes (as implied schematically in Figure 1A). Readers are referred to [19] for an in-depth re-
view of the nuanced suggestions of how confidence signals might be generated psychologically,
in parallel or building on first-order perceptual decisions. This debate notwithstanding and as the
next section will show, the listener’s decision outcomes at a first-order perceptual level and a
second-order metacognitive level can clearly dissociate.

Ideally, subjective confidence judgements in hearing will align with objective measures, such as
neuroaudiological thresholds or auditory task performance (e.g., gap detection, speech in
noise comprehension). An optimally efficient listener’s subjective assessment would closely
match their objective performance. Indeed, subjective ratings of speech intelligibility strongly
correlate with objective measures of number of words comprehended (r > 0.9) [20,21].

However, such congruence of objective and subjective measures does not apply universally. For
instance, the Speech, Spatial, and Qualities of Hearing (SSQ) questionnaire [22] is commonly
used to measure hearing-aid benefit, but it correlates only poorly with objective auditory neural
responses or audiometric tests [23,24]. A large online study of over 1100 healthy adults (age
range 18–74) recently drove home this dissociation [25]: the older the listeners, the demonstrably
worse they performed in an objective digits-in-noise test. However, the same listeners showed no
discernible age-related change in their self-rated listening difficulties as per the SSQ.

These findings align with theories about individual differences in handling adverse listening situa-
tions [25] and highlight the dissociation between objective and subjective listening assessments.
This dissociation is also a telling example of reduced metacognitive efficiency, as introduced ear-
lier in this section. The sources of such reduced metacognitive efficiency in listening deserve
future studies to explore more deeply their neurophysiological underpinnings, and we will turn
to candidate neural mechanisms next.

Neural precision shapes auditory metacognition
Figure 1A illustrates the sensory and perceptual cascade of listening, starting from when the sen-
sory epithelium of a human (or other non-human animal) receives environmental input, over the
accumulation of sufficient sensory evidence to elicit a percept, perceptual decisions, and subse-
quent behavioural output. Also shown is the key idea of a ‘metaperceptual’ cascade that builds
on top of (or in parallel to; for discussion see [19]) the neural and psychological perceptual cas-
cade. As an outcome of such metaperceptual evidence accumulation, metacognitive statements
like ‘hearing my name must have been a false alarm’ become possible.

Both the perceptual andmetaperceptual cascades of Figure 1Amust be implemented neurophys-
iologically at various levels of the neural processing hierarchy: from the auditory peripheral system
to auditory cortex; in auditory–thalamic–striatal loops; and on to brain-wide, domain-general
functional networks that closely interface with domain-specific auditory processing [26–28].

Intuitively, all these neural encoding stages carry various degrees of noise: neural encoding can
turn out more or less precise, and neural precision can become undermined, for example, by
the neurobiology of aging [29–31] (see discussion later). However, neural precision can also
vary rapidly in a state-like fashion depending on the neuromodulatory dynamics of the neural
circuit as a whole. For example, general anaesthesia can degrade frequency tuning in auditory
cortex [32]; excitatory feedback from auditory cortex can shape precision in inferior colliculus
[33]; or stimulation of layer-6 auditory cortical neurons can affect excitation–inhibition balance in
104 Trends in Neurosciences, February 2025, Vol. 48, No. 2
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a corticothalamic loop, where the precise stimulation timing differentially promotes tone detection
versus tone discrimination [34]).

This flexibility and malleability of the precision of neural encodings is key when we aim to capture
auditory perception and auditory metacognition in terms of Bayesian models of perception
(see Box 1), where precision of distributions is a main feature that shapes perceptual outcomes.
As illustrated in Figure 1, we can assume that the resulting metacognitive assessment of one’s
own auditory perception will vary depending on (i) precision of the prior; (ii) precision of the likeli-
hood or sensory evidence; and (iii) the resulting precision of the posterior. Lastly, (iv) post-
decisional factors [7] not shown explicitly here will matter (those post-decisional factors relate
closely to the ‘indirect drivers of meta-listening’ discussed later).

The takeaway here for auditory studies of metacognition is the following: a Bayesian formalisation
of the listener’s percepts and their neural encodings can help us pinpoint sources of perceptual
(im-)precision and predict a listener’s metacognitive outcome; for example, their perceptual con-
fidence or their experienced listening effort.

Candidate neural dynamics of auditory metacognition
The recent literature in human and non-human auditory neuroscience has implicated various neural
influences onmetacognitive outcomes. I here aim to highlight the potential role of alpha (∼8–12 Hz)
oscillatory activity on the one hand and the effects of cortical desynchronisation on the other.

Alpha oscillatory power, dominating the electroencephalography (EEG) spectrum, modulates
during listening tasks mainly in a posterior network of parietal and superior temporal cortex [35].
Thesemodulations primarily reflect a listener’s behavioural goals [36,37] and expectations [38,39]
rather than features of the acoustic signal [40]. The generation of alpha oscillations has been
linked to the neuromodulatory locus coeruleus–noradrenergic (LC–NE) system, which in turn
affects the dopaminergic system [41–43].

A helpful conjecture is that alpha and beta (∼18–25 Hz) oscillations set a regulatory milieu for neural
transmission and encoding [44–46]. Supporting this assumption, alpha/beta oscillations are primar-
ily efferent in nature and exhibit long-range connectivity [26]; they are relatively resistant to entrain-
ment by external sensory rhythms [45]; and they have been associated with inward-oriented
states of mind [47]. As such, alpha/beta oscillations are likely reflecting how auditory cortex popula-
tions represent prior predictions about expected auditory stimuli. An electrocorticography study
using a Bayesian modelling framework and random tone sequences supported this idea [48,49].

In mice, a dopaminergic signal in the striatum scaled with animals’ high detection confidence de-
spite no acoustic evidence (i.e., in false-alarm trials), suggesting a dopamine-related increase in
prior precision [6] (Figure 2A). This is reminiscent of human listeners’ high-confidence decisions
in a recent auditory forced-choice task, where confidence in a trial covaried with preceding
alpha oscillatory power (Figure 2B; [50]). When listeners judged which of two (physically identical)
tones had higher pitch, their confidence scaled linearly with pre-tone alpha power. This aligns well
with findings from various sensory modalities that link alpha oscillatory dynamics to metacognitive
report (e.g., self-rated attention, awareness, or visual confidence [51,52]). The results discussed
here are broadly in line with the notion that catecholaminergic neuromodulation more generally,
such as dopaminergic signalling in the striatum, affects prior precision (for review see [53]).

Unfortunately, however, these results by themselves do not allow us to disambiguate whether
alpha oscillatory power changes metacognitive judgements by modulating prior precision, or
Trends in Neurosciences, February 2025, Vol. 48, No. 2 105
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Figure 2. How metacognitive
abilities surface in neural and
behavioural signatures of listening.
(A) Mice, when detecting tones under
varying signal-to-noise ratios (SNR), invest
varying amounts of time waiting for a
reward. This time investment is a proxy for
confidence. A hallmark of metacognitive
sensitivity is the interaction of SNR and
accuracy: correct trials at good SNR elicit
the highest confidence. High-confidence
false detections covary with dopaminergic
activity in the tail of the mouse striatum,
underlining dopamine’s role in perceptual
and metaperceptual auditory decisions.
Adapted with permission from [6].
(B) Lower centro-parietal alpha (8–12 Hz)
oscillatory power in the human EEG
prior to an auditory stimulus covaries
with higher perceptual confidence reports:
low alpha power may unspecifically
promote neural excitability, boosting both
perceptual and metaperceptual evidence.
Adapted with permission from [50]. (C) The
interconnectivity of human auditory (AUD,
yellow) and cingulo-opercular (CO, red)
networks in task-related haemodyamics
predicts listeners’ confidence. This effect
is driven especially by incorrect trials; a
result paralleling the high-confidence false
alarms reported in mice in panel (A). In
correct trials (70%), confidence reports
are relatively higher. Adapted with
permission from [75]. (D) When N=168
human listeners judge synthesised
complex (i.e., non-speech) sounds, a
reverse-correlation approach shows that
trait-like hallucination-proneness (orange)
and sensory evidence (i.e., more speech-
typical frequency and modulation content;
more acoustic distance between two
sounds in apair; cyan) elicitmore ‘confident’
responses. Adapted with permission from
[92]. Abbreviations: a.u., arbitrary unit; cyc/
oct, cycles per octave; DA, dopamine;
EEG, electroencephalography; fMRI, func-
tional magnetic resonance imaging.
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sensory-evidence precision, or both (Figure 1B; for further elaboration see, e.g., [52,54]). The
identical-tones paradigm discussed earlier speaks to a mechanism via precise sensory-evidence
encoding: trials with lower pre-stimulus alpha activity [50] or with higher pre-stimulus cortical
desynchronisation [55] also showed stronger phase concentration in auditory cortical responses
after stimulus onset.

We might conclude that states of low alpha oscillatory power boost neural excitability in sensory
cortices and thus allow for increased perceptual confidence [50,52]. If this holds true, however,
the often described oscillatory, excitability-dependent fluctuations in stimulus detectability
[56–58] may be conflated with changes in metacognitive assessment, with higher confidence
resulting for stimuli presented in high-excitability phases. To discern whether it is the first-order de-
tection or the second-order confidence that adhere to oscillatory rhythmicity, researchers would
106 Trends in Neurosciences, February 2025, Vol. 48, No. 2
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need to also estimate behavioural confidence time courses. In fact, the underlying oscillatory
properties of metacognition over time are underexplored [59] (particularly in audition; Ref. [60]
hints at an oscillatory dissociation of bias from sensitivity). Numerous studies have identified
neural oscillatory signatures of confidence or metacognitive efficiency as discussed earlier
(e.g., [50,52,61,62]) – however, the potential waxing andwaning over time of an internal confidence
quantity has hardly been studied.

As an excitingly open field for future experimentation, alpha oscillations’ role in shaping meta-
listening will need to be reconciled with the known importance of prefrontal cortex for metacog-
nition (e.g., [61,63,64]). The generators of alpha-band activity critically changing metacognitive
state in the listener might be generated in part also in prefrontal or anterior cingulate and insular
areas, commensurate with contemporary suggestions of a cortical, layer-specific origin of
alpha oscillations [65].

In sum, endogenous alpha-oscillatory power modulations likely impact both sensory-evidence
precision and perceptual priors, which is largely commensurate with a more domain-general
role of neural oscillations in organising and sharpening neural information transmission [66].

Direct versus indirect neural drivers of metacognition in the listening brain
One more mechanistic distinction deserves emphasis. As we have seen, the neural and neuro-
physiological factors that could cause or modulate varying auditory percept precision are numer-
ous. The list of ones considered here in depth is certainly not exhaustive. When studying neural
factors of metacognition in the auditory system, a helpful lead question can be: which are ‘direct’
neural driving pathways of metacognition in audition, and which are more ‘indirect’ neural
pathways? Let us look at this distinction in more depth.

A neural process might affect metacognitive outcomes ‘directly’, that is, it could directly affect
the precision of the auditory first-order percept itself. This could happen either by shaping the
precision with which the afferent sensory evidence becomes represented; or by shaping efferent
signals carrying prior expectations at some level of the auditory hierarchy; or both. The neural
mechanisms discussed earlier, especially alpha oscillatory changes, would fall into this class.

By contrast, ‘indirect’ or amodal neural drivers of metacognition would be those neural dynamics
that affect confidence or metacognitive aspects of listening without affecting the auditory percept,
its priors, or its sensory evidence per se. The locus of such indirect drivers would thus be post-
perceptual, and might draw, as suggested but not well-established [19], separate accumulation
of metacognitive evidence (see Figure 1A).

By this definition, these ‘indirect’ neural mechanisms would also be less auditory-specific and
more supramodal in nature. Candidate mechanisms to exert such ‘indirect’ supramodal effects
on a perceiver’s metacognitive state or trait (e.g., [67,68]) are, for example, the coarse
neuromodulatory changes (as expressed, e.g., in pupil-linked arousal and the LC–NE system;
capturing well the metacognitive traces of listening effort, e.g., [69,70]). Likewise, interoceptive
signals from the cardiovascular system (see, e.g., [71]) or large-scale network changes in
excitation–inhibition balance [72–74] and interconnectivity [26,75–77] could affect metacognitive
outcomes in audition in such a more indirect, post-perceptual fashion.

One obvious way of separating direct from indirect neural influences when analysing
metacognitive measures is by statistically controlling for effects at the auditory–perceptual or
sensory–encoding level. (Essentially, this approximates statistically testing for mediation.)
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A promising approach in metacognition research has thus been to equate first-level perceptual
performance through tight control of stimulus and task features. Such first-order, perceptual
matching helps isolate those neural mechanisms that drive differences in second-order,
metacognitive outcome (in vision see, e.g., [78,79]). Doing so in audition, it can be demonstrated
that the impact of pre-stimulus brain state on metrics of confidence is not being fully mediated
through encoding changes of the auditory percept per se [50,55,80].

Complicating this picture somewhat, however, this matching does not rule out that auditory cortical
areas might be nevertheless involved in post-perceptual, metacognitive processes: for example, in
a recent study that carefully matched listeners’ first-order perceptual task performance at 70%,
the interconnectivity dynamics within an auditory–cingulo–opercular control network predicted
listeners’ confidence reports (Figure 2C; [75]). This result challenges a strict division of labour
between direct drivers (i.e., modality-specific and perceptual-precision-mediated) and indirect
drivers (i.e., amodal and less perceptual-precision-bound) of metacognition. Here, more research
is clearly needed that will simultaneously quantify the local neural dynamics in auditory cortex and
brain-wide networks.

How does metacognition relate to aberrant auditory perception?
As introduced earlier, a number of neurological and neuropsychiatric conditions exhibit close links
to the auditory system and can affectmetacognition. Important examples are dementia, psychosis,
and tinnitus.

Dementia has been characterised in terms of a loss in metacognitive abilities (e.g., [81,82]).
Notably, amongst the potentially modifiable risk factors for dementia, hearing loss is currently
considered the largest one [12,13]. Sensorineural hearing loss as a common, age-related
condition is characterised by a loss of fidelity in sensory encoding of sound [83]: more acoustic
energy is needed to transduce sound; the loss in temporal precision introduces spectral and
temporal smearing; and the dynamic range of sound that can be neurally encoded is severely
reduced.

In Bayesian-perceptual terms, this loss of fidelity can be best thought of as a loss in the precision
of sensory evidence (i.e., a marked widening of the likelihood function). Age-related hearing loss
should thus decrease the resulting perceptual precision. Strikingly, however, older adults are not
only most prone to hearing loss, but they show signs of overconfidence in challenging hearing sit-
uations [25,84,85]. This overconfidence has been demonstrated to trace back to an increased
reliance on semantic context (as a form of perceptual prior [84]).

Higher confidence in older adults thus showcases the impact of prior precision on resulting
confidence: if it were for the age-related loss of sensory precision alone, confidence should
decrease, not increase with age (cf. Box 1; see [86] for modelling such seemingly paradoxical
overconfidence in vision). It remains speculative, at this stage, whether age-related changes in
metacognitive abilities and concomitant changes in meta-listening will allow us to better differen-
tiate trajectories of healthy ageing from their pathological variants.

Auditory verbal hallucinations are another striking example of the delicate balance of prior
assumptions with the precision of auditory encoding. Moreover, when listeners experience
acoustic events that are not physically present, they sometimes do so with high levels of confi-
dence. In fact, a cognitive hallmark of people with schizophrenia (who also commonly experience
auditory verbal hallucinations) is a tendency to ‘jump to conclusions’ [87]. This includes commit-
ting prematurely to perceptual decisions, in tune with a notion of overconfidence. Recent
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Outstanding questions
At which stage of auditory processing
do first-order and second-order audi-
tory perceptual decisions dissociate?
Which are the necessary neural
pathways that allow metacognitive
sensitivity (i.e., type-II or second-order
performance) to be ‘read out’ from a
listener’s actual (i.e., type-I or first-
order) task performance? This is an
unsolved question in vision-based
metacognition research as well.

Will knowing the ‘confidence state’ of a
system, biological or artificial, allow us
to predict its future communication
behaviour? This applies to short time
scale (e.g., in the next trial) and to lon-
ger time scales (e.g., average changes
in future response behaviour).

How should in silico implementations of
listening confidence look? How can
biologically inspired neural network
architectures that process sound
(‘machine listening’) express a degree of
rudimentary metacognitive efficiency?
Which architectural features of an
artificial neural network best match the
confident-listening mechanisms identi-
fied in humans?
experiments have plausibly linked such premature commitment to a decision and a discarding of
disconfirming evidence to reduced precision in sensory evidence (e.g., through ketamine-
induced changes in excitation–inhibition balance [80,88]; but see [89]).

Importantly, auditory verbal hallucinations are not a perceptual phenomenon limited to states of
psychosis. Tendencies to hear voices or have unusual auditory perceptions occur, in gradations,
in about 1 in 10 healthy individuals [90] and are part of the personality dimension of schizotypy
[91]. A recent psychophysical modelling approach demonstrated that the degree of individual
self-reported, trait-like hallucination-proneness comes with a marked under-weighting of
speech-typical sensory evidence (i.e., low acoustic frequencies, slow temporal modulation
rates) when judging sounds to be speech or not [92]. All participants did use sensory evidence
to inform their confidence judgements (i.e., more acoustically dissimilar sound pairs prompted
more confident responses in general). However, more hallucination-prone individuals gave overall
more ‘confident’ responses (up to 30%, in an inherently ambiguous and challenging perceptual
task) (Figure 2D).

Finally, tinnitus is a poorly understood aberration of auditory function and a source of
distress to many. Tinnitus represents an auditory percept, held with high confidence, in
the absence of a causative acoustic event. In other words, it is a ‘hallucination-like percept’
[6], for which established non-human animal models exist [93]. It has been put forward
that chronic tinnitus reflects an imbalance in combining imprecise sensory evidence
(caused by hearing loss, which most often accompanies tinnitus [94]) with an altered
weighing of perceptual priors [95]. The perceptual changes in auditory verbal hallucinations
highlighted earlier beg the question of whether individuals with tinnitus will also exhibit
trait-like metacognitive or metaperceptual changes in the direction of overconfident sound
representation.

In sum, the clinically relevant phenomena of hearing loss, auditory hallucinations, and tinnitus can
be seen as valuable model systems when understanding metacognition more generally. They
help us understand how auditory neurobiology, auditory perception, andmetacognitive sensitivity
are linked. Hearing and listening also allow us to pinpoint the proposed, multi-faceted sources of
metacognitive inefficiency [96]: for example, noisy sensory input (from which confidence is in part
derived) can be controlled easily and thus can help to experimentally isolate mechanisms of con-
fidence computation per se. Not least, understanding better themetacognition of human listening
behaviour will provide viable inroads to improving in silico implementations of perception and
metacognition (see Box 2).

Concluding remarks and future perspectives
The metacognition of listening and its implementations in the listening brain is a nascent field. As I
have aimed to show here, rooting auditory research in a framework of Bayesian perception and
drawing from the rich and growing literature of metacognitive modelling permits us to clearly
delineate the neural and psychological sources of (im-)precision that shape auditory perception
and that affect the metacognitive assessment of our percepts.

Better understanding of the metacognition of listening will also allow us to better target subjective
aspects of listening and communication dissatisfaction. It may further allow identifying when
and how such subjective experiences deviate from objective markers of neural auditory function
(see Outstanding questions). Not least, improving the ability to earlier detect individuals at risk for
psychosis or dementia based on changes in auditory perception and altered metacognitive
sensitivity is a hopeful prospect.
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