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Abstract: In language processing, the relative contribution of early sensory and higher cognitive brain
areas is still an open issue. A recent controversial hypothesis proposes that sensory cortices show
sensitivity to syntactic processes, whereas other studies suggest a wider neural network outside
sensory regions. The goal of the current event-related fMRI study is to clarify the contribution of sen-
sory cortices in auditory syntactic processing in a 2 ! 2 design. Two-word utterances were presented
auditorily and varied both in perceptual markedness (presence or absence of an overt word category
marking ‘‘-t’’), and in grammaticality (syntactically correct or incorrect). A multivariate pattern classifi-
cation approach was applied to the data, flanked by conventional cognitive subtraction analyses. The
combination of methods and the 2 ! 2 design reveal a clear picture: The cognitive subtraction analysis
found initial syntactic processing signatures in a neuronal network including the left IFG, the left
aSTG, the left superior temporal sulcus (STS), as well as in the right STS/STG. Classification of local
multivariate patterns indicated the left hemispheric regions in IFG, aSTG, and STS to be more syntax-
specific than the right-hemispheric regions. Importantly, auditory sensory cortices were only sensitive
to the overt perceptual marking, but not to the grammaticality, speaking against syntax-inflicted
sensory cortex modulations. Instead, our data provide clear evidence for a distinction between regions
involved in pure perceptual processes and regions involved in initial syntactic processes. Hum Brain
Mapp 00:000–000, 2010. VC 2010 Wiley-Liss, Inc.

Keywords: fMRI; language comprehension; linear support vector machine classifier; multivariate
pattern classification; perceptual processing; syntactic processing
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INTRODUCTION

In language comprehension, the analysis of syntactic
structure is thought to be accomplished in two successive
stages. The first is associated with processes of initial
structure building, which, when disturbed, elicit the early
left anterior negativity (ELAN, between 100–200 ms) of the
event-related potential [ERP; Friederici et al., 1993]. The

*Correspondence to: Björn Herrmann, Max Planck Institute for
Human Cognitive and Brain Sciences, MEG group, Muldentalweg
9, 04828 Bennewitz, Germany. E-mail: bherrmann@cbs.mpg.de

Received for publication 28 July 2010; Revised 1 November 2010;
Accepted 18 November 2010

DOI: 10.1002/hbm.21235
View this article online at wileyonlinelibrary.com.

J_ID: HBM Wiley Ed. Ref. No: 10-0476.R1 Customer A_ID: HBM21235 Date: 23-December-10 Stage: Page: 1

ID: srinivasanv I Black Lining: [ON] I Time: 16:56 I Path: N:/3b2/HBM#/Vol00000/100259/APPFile/JW-HBM#100259

VC 2010 Wiley-Liss, Inc.



second stage is thought to reflect revision/repair proc-
esses, with the P600 (positivity around 600 ms) elicited in
case of syntactic violations [Friederici, 2002; Hagoort et al.,
1993]. The ELAN is considered to be strongly automatic,
whereas the P600 can be modulated by task or expectation
of a violation [Hahne and Friederici, 1999, 2002]. Recently,
Hasting and Kotz [2008] observed an early negativity, but
no P600 when two-word utterances that included a syntac-
tic phrase structure violation were presented (e.g., ‘‘ein
kegelt’’, Engl. ‘‘a bowls[verb]’’). The authors argued that
revision/repair processes were not initialized for these
two-word utterances, as they do not suffice to form a
sentence [Hasting and Kotz, 2008].

Localizing the neuronal mechanisms underlying initial
syntactic processing in the visual domain, Dikker et al. [2009,
2010] recently argued that visual sensory cortices can be
affected by syntactic word category violations, in cases in
which the syntactic category is overtly marked by a suffix. In
an auditory oddball paradigm using two-word utterances,
Herrmann et al. [2009] reported seemingly compatible results
by localizing the syntactic mismatch negativity (sMMN) to
phrase structure violations in the primary auditory cortex
(PAC). In such a paradigm, however, syntactic processing is
accompanied by a salient acoustic change [see Shtyrov and
Pulvermüller, 2007], which might bias the source localization
toward the primary areas. Auditory sentence processing
studies rather revealed activations in the anterior superior
temporal gyrus (aSTG) than in auditory sensory cortices in
response to syntactically incorrect sentences [Friederici et al.,
2000; Knösche et al., 1999]. Furthermore, magnetoencepha-
lography (MEG) and functional magnetic resonance imaging
(fMRI) studies using sentences reported activations in the in-
ferior frontal gyrus (IFG) or in the frontal operculum [Brauer
and Friederici, 2007; Friederici et al., 2000, 2003, 2010;
Knösche et al., 1999] in addition to the aSTG. Moreover, the
studies reporting early sensory cortex modulations were
based on MEG recordings. MEG, however, might not pro-
vide the spatial resolution to differentiate between cortical
regions in very close proximity [Baillet et al., 2001]. Conse-
quently, it is still an open question whether auditory sensory
cortices are affected by initial syntactic processing or not.

The aim of the present fMRI study was to investigate
the underlying brain regions involved in initial syntactic
processing and to clarify the role of the auditory sensory
cortices in this process. Previous fMRI studies on syntactic
processing were not able to differentiate between initial
syntactic processes and processes of revision/repair due to
the time-insensitive hemodynamic response measured
with fMRI. In order to gain from the high spatial resolu-
tion of fMRI but circumvent the overlap of responses to
the two different processes, two-word utterances that have
previously been shown to lead to initial syntactic processes
only [Hasting and Kotz, 2008] were presented in a 2 ! 2
stimulus design. Within one factor the grammaticality of
the utterances was varied (either syntactically correct or
syntactically incorrect), whereas the second factor varied

the overt perceptual markedness of the utterances (either
with or without a suffix ‘‘-t’’ marking the word category of
the second word). Methodologically, we used both, a
conventional cognitive subtraction (univariate) analysis and
a multivariate pattern analysis (MVPA) to evaluate the
data. In general, a MVPA uses the information contained in
local brain activation patterns to decode the cognitive state
associated with those activations. Importantly, MVPA has
been found sensitive to effects that are undetected by
conventional analyses [Formisano et al., 2008; Haynes and
Rees, 2005, 2006], thus, providing a method that is poten-
tially able to decode very small syntactic effects from
auditory cortex activation patterns.

MATERIALS AND METHODS

Participants

The current experiment was conducted with twenty-five
participants (12 female). All were native speakers of Ger-
man, Aged 22–32. They were all right-handed as measured
by the Edinburgh Handedness Inventory [Oldfield, 1971]
with a mean laterality quotient of 94.3 ("1.7 SEM; stand-
ard error of mean). Participants had no known hearing
deficit or neurological diseases in their history. They gave
informed consent prior to the experiment and were paid
for their participation.

Stimulus Material

Participants were auditorily presented with 384 German
two-word utterances throughout the experiment, from
which 182 were syntactically correct and 182 syntactically
incorrect. In half of the correct and half of the incorrect
two-word utterances the ending of the second word was
perceptually overtly marked by a suffix, whereas the other
half of the correct and the incorrect utterances were
unmarked, thereby constituting the Grammaticality- Percep-
tual Markedness 2 ! 2 stimulus design.

In more detail, stimuli were developed around 24 differ-
ent monosyllabic word stems (e.g., ‘‘knie,’’ Engl. ‘‘knee’’).
The word stems were either perceptually overtly marked
by the suffix ‘‘-t’’, giving 24 different verbs (e.g., ‘‘kniet,’’
Engl. ‘‘kneels’’), or unmarked, giving 24 different nouns
(‘‘Knie,’’ Engl. ‘‘knee’’). These verbs and nouns were
preceded once by a personal pronoun (‘‘er,’’ Engl. ‘‘he’’)
and once by a preposition (‘‘im,’’ Engl. ‘‘in-the’’), resulting
in 96 different two-word utterances, which were each
spoken by four different trained native speakers of
German (two female) and digitized at 44.1 kHz (16 bit,
mono, normalized by peak intensity), leading to the 384
two-word utterances used in the experiment.

The 182 syntactically correct utterances consisted of ei-
ther a personal pronoun-verb combination (e.g., ‘‘er kniet,’’
Engl. ‘‘he kneels’’) or of a preposition-noun combination
(e.g., ‘‘im Knie,’’ Engl. ‘‘in-the knee’’). The 182 syntactically
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incorrect utterances consisted of a personal pronoun-noun
combination (e.g., ‘‘er Knie,’’ Engl. ‘‘he knee’’) or of a prepo-
sition-verb combination (e.g., ‘‘im kniet,’’ Engl. ‘‘in-the
kneels’’). The latter combination included a word category
violation at the verb, because in German, a preposition
requires a noun phrase to follow. The former combination,
on the other hand, is not absolutely incorrect in German,
because within a sentence, a noun is allowed to follow a
personal pronoun (e.g., ‘‘Sie sah, dass er Knie und Haut
verletzt hatte,’’ literal translation: ‘‘She saw, that he knee and
skin had injured.’’). However, in isolation without sentence
context, this combination was previously categorized as
absolutely incorrect by all participants asked [Herrmann
et al., 2009] and is therefore taken as syntactically incor-
rect. Moreover, the correct use of such a combination in
speech would require an intonational phrase boundary
(with a pause) after ‘‘er,’’ which was not present in the
current stimulus material.

Henceforth, syntactically correct and syntactically incor-
rect utterances including a bare word stem are referred to
as perceptually ‘‘unmarked conditions’’ and utterances
including a perceptually overt marking are called ‘‘marked
conditions.’’ Thus, four different conditions were presented:
correct unmarked, correct marked, incorrect unmarked and
incorrect marked (see TableT1 I).

Design and Procedure

Imaging was conducted using a 3-T Siemens TRIO
scanner (Erlangen, Germany) with a 12-channel headcoil.
Participants were comfortably positioned in the bore and
wore air-conduction headphones (Resonance Technology,
Los Angeles, USA). Echo-planar imaging (EPI) scans were
acquired in 30 axial slices covering temporal, inferior
frontal and visual cortices. The sequence was set up with
echo time (TE) 30 ms, flip angle 90#, repetition time (TR)
2.0 s, and acquisition bandwidth 116 kHz. The matrix was
64 ! 64 pixels with a field of view of 192 mm2, resulting
in an in-plane resolution of 3 ! 3 mm2. The measured slice
thickness was 2 mm plus an interslice gap of 1 mm. Scans
were acquired in six independent runs which were sepa-
rated by a short break of about 30–60 s in which scanning
was discontinued. Additionally, a field map was acquired
in each participant, providing an estimate of local field
inhomogeneities that was used in the spatial preprocessing
of the functional data.

Sixty-four two-word utterances (16 of each condition;
see Stimulus Material) were presented auditorily in each
of the six runs. Within each run, utterances were random-
ized for each subject with the constraint that no more
than three stimuli of the same type (word stem, speaker’s
gender, grammaticality) were presented in direct succes-
sion. The inter-trial-interval was 7 s and the onset of the
utterance was jittered by 0, 400, 800, and 1200 ms equally
distributed over conditions. To avoid motor preparation, a
variable response key assignment was used as follows. A
picture showing a happy and a sad smiley side by side
was presented 2,600 ms after the utterance ended. The
positions (left vs. right) of the happy and sad smiley were
randomized uniformly within each run and across condi-
tions. For the grammaticality judgment, participants used
their index fingers to press the button corresponding to
the happy (correct utterance) or sad smiley (incorrect
utterance). The response pictures were projected through
an LCD projector (PLC-XP50L, Sanyo) onto the back of a
screen. Participants viewed the pictures on the screen
above their heads through a mirror attached to the head-
coil. An IBM-compatible computer running with Presenta-
tion (Neurobehavioral Systems, Albany, CA) controlled
the stimulation.

Data Analysis—Univariate Approach

Functional images were preprocessed for each run sepa-
rately using Statistical Parametric Mapping (SPM8, Well-
come Imaging Department, University College, London,
UK, http://www.fil.ion.ucl.ac.uk/spm). Functional time
series were realigned, and corrected for field inhomogene-
ities using individual field maps [Cusack et al., 2003;
Jezzard and Balaban, 1995] (‘‘unwarped’’), slice scan time
corrected, normalized to the standard SPM8 EPI template
using a transformation matrix calculated from the mean
EPI image generated during realignment, and spatially fil-
tered using a Gaussian filter with 6 mm FWHM. The first
five images of the functional time series of each run were
discarded to allow for magnetic saturation effects. The
time series were 1/100 Hz high pass filtered and corrected
for first-order autocorrelation. For each participant, a
general linear model (GLM) including all six runs with four
conditions (correct unmarked; correct marked; incorrect
unmarked; incorrect marked) was estimated with a canoni-
cal hemodynamic response function [Friston et al., 1995].
Responses to the syntactically incorrect conditions were con-
trasted against those to the syntactically correct conditions
(Grammaticality contrast), and responses to the marked con-
ditions were contrasted against those to the unmarked condi-
tions (Perceptual Markedness contrast). Note that both
contrasts controlled for any acoustic differences introduced
by the personal pronoun and the preposition due to the cur-
rent 2 ! 2 stimulus design. For the two contrasts, the individ-
ual contrast images were then entered into a second-level
random-effects analysis consisting of a one-sample t-test
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TABLE I. Experimental conditions in the 2 3 2 stimulus
design (transcripts of the auditory stimuli)

Perceptual
markedness

Grammaticality

Correct Incorrect

Unmarked e.g., ‘‘im Knie’’ (in-the knee) e.g., ‘‘er Knie’’ (he knee)
Marked e.g., ‘‘er kniet’’ (he kneels) e.g., ‘‘im kniet’’

(in-the kneels)
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which indicates whether the observed differences between
conditions are significantly different from zero. Subse-
quently, t-values were transformed into z-scores. Activations
were cluster extent threshold corrected for multiple compari-
sons (P $ 0.05) using Monte Carlo simulations as described
in Slotnick and Schacter [2004] and Slotnick et al. [2003].
Only regions with a z-score equal or greater than 3.719
(P ¼ 0.0001) and with a volume equal or greater than 216
mm (eight voxels) were considered statistically significant.

To further explore differences between conditions, a
region of interest (ROI) analysis was conducted using the
MarsBaR toolbox [v0.42; Brett et al., 2002]. Mean beta
weights from peak-voxel-centered spheres of 4-mm radius
were estimated based on the random-effects contrasts.
Motivated by the study conducted by Herrmann et al.
[2009, mean coordinates of the PAC provided by Rade-
macher et al. [2001] were transformed into MNI (Montreal
Neurological Institute) space [Lancaster et al., 2007] (left
PAC (TE 1.0): &44 &20 6; right PAC (TE 1.0): 51 &11 5)
and then entered into the analysis. Mean beta weights
were transformed to percentage signal change (PSC).
Subsequently, a two-way repeated measure analysis of var-
iance (rmANOVA) including the factors Grammaticality
(correct; incorrect) and Perceptual Markedness (unmarked;
marked) was conducted for each ROI, using the PSC as
dependent measure. Note that such a post-hoc ANOVA is
potentially biased in the subset of regions of interest which
has been extracted from the group SPM results of the same
data set and should thus be used with caution. Strictly
speaking, the statistical results of this analysis do not
adhere to the same stringency as those obtained from the
whole-brain analysis where a correction for multiple com-
parisons was applied. Nonetheless, this approach has been
considered valid to further explore patterns of activity
across conditions [Poldrack, 2007] and has been pursued as
such previously [e.g., Altmann et al., 2008; Bornkessel-
Schlesewsky et al., 2009; Shtyrov et al., 2008]. For the PAC
ROIs, however, no such potential bias is present because
they were based on independent, previously published
data [Herrmann et al., 2009]. The SPM Anatomy toolbox
(v1.6) was used to derive the cortical labels associated with
the peak voxels [Eickhoff et al., 2005].

Data Analysis—Multivariate Approach

We also conducted a MVPA to evaluate the data with a
method known to also be sensitive to small changes in
activity patterns [Formisano et al., 2008; Haynes and Rees
2005, 2006]. The univariate fMRI analysis described in the
previous section is based on spatially smoothed fMRI sig-
nals focusing on overall differences in activation strength
associated with the experimental conditions. This allows
inferences about the involvement of a region in a specific
mental function. Pattern analysis, by contrast, focuses on
the information contained in the region’s local activity
pattern changes related to the experimental conditions,
which allows inferences about the representational content

of a region [Haynes and Rees, 2006; Kriegeskorte and
Bandettini, 2007; Mur et al., 2009; Norman et al., 2006].

Preprocessing of the functional images was conducted
using SPM8, whereby functional time series of each run
were realigned, and corrected for field inhomogeneities
using individual field maps [Cusack et al., 2003; Jezzard
and Balaban, 1995] (‘‘unwarped’’), slice scan time
corrected, and spatially filtered using a Gaussian filter
with 3-mm FWHM. Applying spatial smoothing prior to
the multivariate pattern classification has previously been
shown to improve the classification performance [Ethofer
et al., 2009]. As in the univariate analysis, the first five
images of the functional time series of each run were
discarded to allow for magnetic saturation effects. The
time series were 1/100 Hz high pass filtered and corrected
for first-order autocorrelation. For each run, a GLM
was computed at the single-participant level with the four
conditions (correct unmarked; correct marked; incorrect
unmarked; incorrect marked) using a canonical hemody-
namic response function [Friston et al., 1995]. The individ-
ual brain activity patterns used for the MVPA were then
estimated as spm{T} condition-specific main contrasts
(condition vs. global baseline) for each run separately.

A linear support vector machine (SVM) classifier was
applied to analyze the brain activation patterns [Chang
and Lin, 2001, LIBSVM matlab-toolbox v2.89], as several
studies in cognitive neuroscience have recently reported
accurate classification performance using a SVM classifier
[e.g., Ethofer et al., 2009; Formisano et al., 2008; Haynes
et al., 2007]. For each condition and run, a feature vector x
with the length of voxels was acquired using the spm{T}
estimates as feature values. A linear SVM separates train-
ing data points x for two different given labels by fitting a
hyperplane wTx þ b ¼ 0 defined by the weight vector w
and an offset b. Classification performance generalization
was tested using a leave-one-out cross validation (LOOCV),
in which the data of one run was kept out while the data
of the other five runs was used to train the classifier. The
trained classifier was then tested in decoding the labels
from the brain activation pattern of the run which had
been left out in training. Decoding accuracies were
obtained by comparing the decoded labels with the experi-
mental labels and averaged afterwards. This procedure was
repeated six times (i.e., using each of the six runs as test
run once). Subsequently, the six accuracies were averaged,
resulting in a mean decoding accuracy value.

In the current setting, a multivariate ‘‘searchlight’’
approach was used to estimate the local discriminative
pattern over the whole brain [Haynes et al., 2007; Kriege-
skorte et al., 2006]. On that account, a series of multivari-
ate pattern classifications was conducted for each voxel
position. The searchlight feature vector contained spm{T}
estimates for that voxel and its close neighbors. A search-
light radius of two voxels (6 mm), which comprised about
33 voxels per searchlight position, was selected. Decoding
accuracies were computed by applying a full LOOCV for
each searchlight. In order to conduct a group analysis,
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individual 3D decoding accuracy maps were spatially
normalized to the standard SPM8 EPI template using a
transformation matrix calculated from the mean EPI image
generated during realignment, and spatially smoothed
using a Gaussian filter with 6-mm FWHM. The reliability
of the decoding performance was tested by conducting a
t test for each voxel comparing the decoding accuracy of
that voxel to the overall mean decoding accuracy of all
the other gray and white matter voxels (i.e., an effective
chance level). This procedure resembles the localization
test proposed for ROI-based classification approaches
[Etzel et al., 2009], which is more conservative than
comparing to the 50% chance level. Subsequently, t-values
were transformed into z-scores. To correct for multiple
comparisons, a cluster extent threshold, ensuring a whole-
brain Type I error control of a $ 0.05, was determined in a
Monte Carlo simulation, and consecutively applied [Slot-
nick and Schacter, 2004; Slotnick et al., 2003]. Only regions
with a z-score equal or greater than 3.719 (P ¼ 0.0001) and
with a volume equal or greater than 216 mm (eight voxels)
were considered statistically significant, similar to the
univariate analysis.

The following two pairwise classifications were
obtained: Grammaticality (correct conditions vs. incorrect
conditions) and Perceptual Markedness (unmarked condi-
tions vs. marked conditions).

RESULTS

Behavioral Performance

Mean percentage of hit rates (" SEM) in the scanner
were as follows: correct unmarked 88.3% (SEM ¼ 3.4); cor-
rect marked 93.8% (SEM ¼ 2.3); incorrect unmarked 92.7%
(SEM ¼ 2.1); incorrect marked 93.8% (SEM ¼ 2.1). A two-
way rmANOVA including the factors Grammaticality
(correct; incorrect) and Perceptual Markedness (unmarked;
marked) was carried out and revealed a mild main effect
of Grammaticality (F(1,24) ¼ 4.62, P ¼ 0.042, g2 ¼ 0.16)
and a main effect of Perceptual Markedness (F(1,24) ¼
11.72, P ¼ 0.002, g2 ¼ 0.33), overridden by a significant
Grammaticality ! Perceptual Markedness interaction
(F(1,24) ¼ 9.78, P ¼ 0.005, g2 ¼ 0.29). Post-hoc tests showed
that the hit rate for the syntactically correct unmarked
condition was significantly lower compared to the each of
the other three conditions (for all, F(1,24) > 7.5, P < 0.05,
g2 > 0.20; all other comparisons F(1,24) < 2.5, P > 0.10).

Reaction times are not reported as the participants were
instructed to make a delayed grammaticality judgment 2.6
s after the full utterance was presented.

Univariate fMRI Analysis

The whole brain analysis revealed stronger responses for
syntactically incorrect versus syntactically correct two-word
utterances in the left middle STS (mSTS) extending into the
posterior STS (pSTS), in the left IFG (BA44), the left aSTG

as well as in the right STS/STG extending into anterior
and posterior areas. Furthermore, stronger hemodynamic
responses were observed for perceptually overtly marked
versus unmarked conditions in the mSTG and the auditory
cortex (AC) in both hemispheres (see Fig. F11). For each peak
voxel within a z-map cluster, corresponding z-score values,
MNI coordinates and voxel extent are shown in Table T2II.

To evaluate the effects of the conditions separately (see
Methods), a ROI analysis was conducted for each cluster
peak voxel (sphere) presented in Table II. For the left-hem-
ispheric ROIs of the Grammaticality contrast, the IFG
(BA44) and the aSTG each showed a significant main effect
of Grammaticality exclusively (F(1,24) ¼ 28.70, P < 0.001,
g2 ¼ 0.54; F(1,24) ¼ 39.02, P < 0.001, g2 ¼ 0.62; respec-
tively), driven by the higher signal change in syntactically
incorrect conditions. A main effect of Grammaticality
(F(1,24) ¼ 49.04, P < 0.001, g2 ¼ 0.67) and a main effect of
Perceptual Markedness (F(1,24) ¼ 7.09, P ¼ 0.014, g2 ¼
0.23) were found in the left STS. Syntactically incorrect
conditions led to higher PSC than the syntactically correct
conditions and the perceptually marked conditions
showed higher PSC compared to the unmarked conditions.
Similar results were obtained for the right STG and STS
regions, showing a main effect of Grammaticality (F(1,24)
¼ 40.20, P < 0.001, g2 ¼ 0.63; F(1,24) ¼ 34.00, P < 0.001,
g2 ¼ 0.59; respectively) as well as a main effect of Percep-
tual Markedness (F(1,24) ¼ 6.76, P ¼ 0.016, g2 ¼ 0.22;
F(1,24) ¼ 5.29, P ¼ 0.031, g2 ¼ 0.18; respectively).

The analysis for the ROIs of the Perceptual Markedness
contrast revealed only a main effect of Perceptual Marked-
ness in the left and right STG/AC caused by higher PSC
for the marked conditions (F(1,24) ¼ 27.70, P < 0.001, g2 ¼
0.54; F(1,24) ¼ 28.96, P < 0.001, g2 ¼ 0.55; respectively).
None of the other main effects or interactions were signifi-
cant (for all, F(1,24) < 3.5, P > 0.05).

The hypothesis-driven investigation of the PAC revealed
a main effect of Perceptual Markedness in the left and
right hemisphere (F(1,24) ¼ 13.84, P ¼ 0.001, g2 ¼ 0.37;
F(1,24) ¼ 5.45, P ¼ 0.028, g2 ¼ 0.19; respectively), whereas
no significant main effects of Grammaticality nor signifi-
cant interactions were found (for all, F(1,24) < 1.0, P >
0.30). Figure 1 shows the results of the ROI analyses.

Multivariate fMRI Analysis

As depicted in Figure F22, decoding performance for
the Grammaticality classification revealed a strong left
hemispheric bias, showing accuracies significantly above
chance level in the left inferior and superior IFG (BA44),
the left aSTG, the left STS and the left posterior middle
temporal gyrus (pMTG). That is, neural activation imprints
in these subregions of the frontal and temporal cortices
allowed the correct decoding of the grammatical correct-
ness of the utterances heard.

To test the statistical significance of the leftward bias in
the Grammaticality classification, the following post-hoc
procedure was applied. For each peak voxel in a cluster of
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the z-score map (see TableT3 III), a homologue voxel in
the opposite hemisphere was selected by multiplying the
x-coordinate of that cluster voxel by &1. A sphere of 4 mm

radius was centered on each of these voxels and the mean
decoding accuracy for each participant and ROI was
extracted. Subsequently, an rmANOVA including the
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Figure 1.

Results of the group analysis for the two univariate contrasts.
Center: syntactically incorrect > correct (red, Grammaticality
contrast), perceptually marked > unmarked (green, Perceptual
markedness contrast), z-maps thresholded at P < ¼ 0.0001 and
a cluster extent of k > ¼ 8 voxels. Top and Bottom: z-normal-
ized percent signal change for each ROI and condition (cu—cor-

rect unmarked, cm—correct marked, iu—incorrect unmarked,
im—incorrect marked) (LH—left hemisphere, RH—right hemi-
sphere, STG—superior temporal gyrus, STS—superior temporal
sulcus, IFG—inferior frontal gyrus, PAC—primary auditory cor-
tex, AC—auditory cortex, a—anterior). The error bars reflect
the standard error of the mean.
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factors Hemisphere (left; right) and ROI (inferior IFG;
superior IFG; aSTG; STS; pMTG) was conducted. Impor-
tantly, the rmANOVA revealed a main effect of Hemi-
sphere (F(1,24) ¼ 34.67, P < 0.001, g2 ¼ 0.59), caused by
higher decoding accuracies in the left hemisphere, whereas
the main effect of ROI and the Hemisphere ! ROI interac-
tion were not significant (F(4,96) ¼ 2.15, P > 0.05; F(4,96)
¼ 0.82, P > 0.50; respectively) (see Fig. 2). To assure that
these results were not caused by the left-right asymmetry of
the brain, the decoding accuracy maps were also spatially
normalized to a symmetrical template (built from the SPM8
EPI template described in the Methods by mirroring the
left hemisphere to the right). As before, the rmANOVA
revealed a main effect of Hemisphere (F(1,24) ¼ 47.63, P <
0.001, g2 ¼ 0.67), due to higher decoding accuracies in the
left hemisphere, whereby the main effect of ROI and the
Hemisphere ! ROI interaction were not significant (F(4,96)
¼ 2.14, P > 0.05; F(4,96) ¼ 0.40, P > 0.70; respectively).

With respect to the Perceptual Markedness classification,
a bilateral pattern was observed, revealing decoding accu-
racies significantly above chance level in the rather medial
left and right STG. Thus, bilateral areas most likely belong-
ing to belt and parabelt areas of the auditory cortex (and
being relatively low in the language processing hierarchy)
allowed the correct identification of perceptually overtly
marked stimuli.

Although the cluster in the right hemisphere was
much larger than the one in the left hemisphere, a one-way
rmANOVA including the factor Hemisphere (left; right)
did not show a significant difference between decoding
accuracies for peak-centered spheres in the left and right
hemisphere (F(1,24) ¼ 0.19, P > 0.60) (see Fig. 2).

DISCUSSION

The present fMRI study aimed to test whether auditory
sensory cortices are affected by initial syntactic processes,
and—if so—to which processing step they specifically
contribute. On this account, two-word utterances that

were either syntactically correct or contained a syntactic
word category violation were presented. Additionally, the
critical word category of the utterances was either per-
ceptually overtly marked by a suffix or was unmarked,
eliciting a salient acoustic difference as a consequence. The
analysis revealed stronger hemodynamic responses for
syntactically incorrect utterances compared to correct ones
in the left IFG, the left aSTG, the left STS and in the right
STS/STG, but no such difference in the AC. Instead,
increased activation in the PAC/AC was observed for
overtly marked items, revealing a perceptual response.
These results were further confirmed by a second analysis
using a MVPA. In the following, the findings are
discussed in more detail starting at the behavioral level,
followed by the perceptually-based processes and gram-
mar-based processes.

Behaviorally, participants had more trouble judging the
grammaticality of the correct yet unmarked utterances
(e.g., ‘‘im Knie’’, Engl. ‘‘in-the knee’’) compared to the other
conditions. Previously, Herrmann et al. [2009] reported
similar effects in their stimulus rating of two-word
phrases. This effect might be due to the slight category
ambiguity of the noun (e.g., ‘‘Knie’’, Engl. ‘‘knee’’), because
in speech, it could also serve as the seldom-used impera-
tive form of a verb (e.g., ‘‘knie nieder’’, Engl. ‘‘kneel down’’).
Importantly, the current fMRI results do not show any
specific neuronal responses to the correct unmarked condi-
tion, indicating automatic processing of these stimuli.

Neural Imprints of Perceptually-Based Processes

With respect to perceptual processes, two-word utteran-
ces which were perceptually overtly marked by the suffix
‘‘-t’’ led to stronger hemodynamic responses bilaterally
within the AC. Consistently, the MVPA also revealed
STG/AC regions to be informative for separating the
unmarked from the perceptually marked conditions, with
no difference in decoding accuracies between hemispheres.
These results are in line with previous studies showing
that the PAC and (para)belt areas respond strongly to
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TABLE II. Univariate analysis: Brain regions activated in the grammaticality and in
the perceptual markedness contrast and peak voxel information

Region
MNI peak

coordinate (mm) Contrast z-score
Extent
in voxel

Left IFG (BA44) &54 8 10 G 4.41 19
Left STS &60 &22 &2 G 5.06 144
Left aSTG &54 5 &14 G 4.85 13
Right STS 57 &28 1 G 4.68 89
Right STG 60 &4 &8 G 4.75 21
Left STG/AC (TE 1.1) &45 &22 1 P 4.58 42
Right STG/AC (TE 1.1) 48 &22 7 P 4.80 61

TE—temporal area ‘‘E,’’ STG—superior temporal gyrus, STS—superior temporal sulcus, IFG—infe-
rior frontal gyrus, AC—auditory cortex, a—anterior, G—grammaticality contrast, P—perceptual
markedness contrast.
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Figure 2.

Results of the group analysis for the two multivariate classifica-
tions. Center: syntactically incorrect vs. correct (red, Grammati-
cality classification), perceptually marked vs. unmarked (green,
Perceptual markedness classification), z-maps thresholded at
P < ¼ 0.0001 and a cluster extent of k > ¼ 8 voxels. Top and
Bottom: decoding accuracies for the left hemispheric regions and

their homologue regions in the right hemisphere (LH—left
hemisphere, RH—right hemisphere, STG—superior temporal
gyrus, STS—superior temporal sulcus, MTG— middle temporal
gyrus, IFG—inferior frontal gyrus, AC—auditory cortex, a—ante-
rior, p—posterior, i—inferior, s—superior). The error bars reflect
the standard error of the mean.
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more basic acoustic features of the auditory signal, with
increasing sensitivity to more complex stimuli in regions
further away from the core regions [Kaas and Hackett,
2000; Rauschecker and Tian, 2004; Wessinger et al., 2001].
It should be mentioned, nonetheless, that in the current
paradigm, the perceptual markedness contrast (marked vs.
unmarked conditions) also reflects a verb vs. noun con-
trast, as only verbs were overtly marked by the suffix.
However, this explanation is unlikely to account for the
present findings as activation was restricted to the sensory
cortices, whereas previous studies contrasting verbs with
nouns revealed regions in the left IFG, middle frontal
gyrus, MTG and STG [e.g., Perani et al., 1999; Tyler et al.,
2004]. Additionally, participants’ attention was drawn to
the grammaticality of the utterances, requiring them to
focus on the suffix, whose presence or absence rendered
the utterances syntactically correct or incorrect. In essence,
the sensitivity of the auditory cortices to the perceptually
overt marker illustrates how higher-level language regular-
ities such as word category marking are intertwined with
their acoustic realizations. The brain is likely to utilize all
cues available to judge the grammaticality, which—in this
case—is best solved on an acoustic basis, hence eliciting
unambiguous (i.e., classifiable) neural patterns already in
the sensory cortices.

Neural Imprints of Grammar-Based Processes

Regarding syntactic processing, in their EEG study on
similar two-word utterances containing a syntactic phrase
structure violation, Hasting and Kotz [2008] only found an
early syntactic effect (between 100 and 300 ms) but no
additional effect in a later time window. If their interpreta-
tion that these stimuli do not lead to P600 assigned
revision processes is correct in principle, then for the
current study, this implies that although fMRI lacks the
fine-grained temporal resolution in the range of millisec-
onds, the observed activations can be attributed to early
automatic processes reflecting phrase structure building

(difficulties) alone [Friederici et al., 1993; Hahne and
Friederici, 1999, 2002], rather than to both early processes
and processes associated with revision/repair [Friederici,
2002; Friederici and Kotz, 2003].

Recent studies which reported that syntactic violations
can affect sensory cortex activations when unexpected
form properties (e.g., an unexpected suffix) of the critical
word category are encountered [Dikker et al., 2009, 2010;
Herrmann et al., 2009] must be seen in the context of the
current findings which rather indicate that syntax as
such triggers activations outside the auditory cortices. The
activation patterns of the AC allowed distinguishing only
the subtle acoustic differences between the two speech
signals, i.e., the presence or absence of a suffix, while they
were insensitive to grammaticality. This result was also
confirmed by the MVPA that was applied because of its
known high sensitivity, revealing informative patterns in
the AC activations only for the perceptual markedness of
the utterances but not for the grammaticality, a finding
that is in line with the view that the primary auditory
regions are not yet involved in speech-specific processes
[Scott and Johnsrude, 2003].

The present results show that a wider neuronal network
is involved in syntactic processes (i.e., initial phrase struc-
ture building and possible difficulties at this stage), which
can be clearly distinguished from the regions involved
in pure perceptual processes elicited by the presence of
a suffix. In detail, comparison of syntactically incorrect
with syntactically correct two-word utterances revealed
increased activation in the left IFG (BA44), the left aSTG,
the left STS and the right STS/STG. Previous fMRI studies
that investigated syntactic phrase structure violations
reported activations in the left frontal operculum adjacent
to BA44 rather than in BA44, in addition to activations in
the STG [Brauer and Frederici, 2007; Friederici et al., 2003].
The left BA44, however, has been shown to be involved in
syntactic processing when syntactic complexity was varied
[Lee and Newman, 2010; Makuuchi et al., 2009], or when
processing demands for sentences with syntactic phrase
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TABLE III. Multivariate analysis: Brain regions discriminating between conditions in
the grammaticality and in the perceptual markedness classification and peak voxel

information

Region
MNI peak

coordinate (mm) Classification z-score
Extent
in voxel

Left iIFG (BA44) &45 14 4 G 4.35 18
Left sIFG (BA44) &51 11 22 G 4.61 131
Left aSTG &51 5 &11 G 4.01 10
Left STS &63 &22 &2 G 4.90 28
Left pMTG &60 &43 &2 G 4.72 132
Left STG/AC &39 &22 1 P 3.87 9
Right STG/AC (TE 1.0) 54 &19 4 P 4.71 116

TE—temporal area ‘‘E,’’ STG—superior temporal gyrus, STS—superior temporal sulcus, MTG—
middle temporal gyrus, IFG—inferior frontal gyrus, AC—auditory cortex, a—anterior, p—posterior,
i—inferior, s—superior, G—grammaticality classification, P—perceptual markedness classification.
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structure violations increases due to participants’ inprofi-
ciency in the language [Brauer and Friederici, 2007;
Rüschemeyer et al., 2005], or when sentences containing
phrase structure violations were randomly mixed with
unintelligible sentences [Friederici et al., 2010]. Further-
more, in an fMRI study using visually presented two-
word phrases which included a syntactic word category
violation, activation was found in the left BA44 as well
[Kang et al., 1999]. Thus, the current results are in line
with these previous findings showing the involvement of
the inferior frontal cortex in syntactic processing, although
it remains an open question under which conditions the
frontal operculum as opposed to the pars opercularis
(BA 44) is engaged in phrase structure processing.

We also observed stronger hemodynamic responses for
syntactically incorrect utterances in the left aSTG and the
left STS as well as in the right STS/STG. Moreover, the
MVPA revealed similar results in the left hemisphere,
with an additional cluster extending from the pSTS into
the pMTG, whereas multivariate patterns informative for
the experimental conditions in the right hemisphere were
not significant. This is compatible with the notion of a left-
lateralized network for syntactic processing [Friederici,
2002; Friederici and Kotz, 2003]. Interestingly, in the ROI
analysis, the left STS and the right STS/STG showed a per-
ceptual markedness effect in addition to the syntactic
effect. Although previous studies reported an involvement
of the STS in a variety of different processes [for a review
see Hein and Knight, 2008], in the language domain, the
STS has previously been associated with phonetic process-
ing [Liebenthal et al., 2005; Obleser et al., 2007] and, in
more posterior regions, with syntactic processing in gen-
eral [Friederici et al., 2009, 2010]. The left aSTG in particu-
lar, was found to be involved in syntactic processing only,
confirming previous results that highlight the importance
of the aSTG in syntactic processes [Brauer and Friederici,
2007; Friederici et al., 2003; Humphries et al., 2005]. In con-
junction with the MTG the STS has also been associated,
with accessing the mental lexicon [Kotz et al., 2002;
Obleser and Kotz, 2010]. Previous functional and structural
connectivity studies reported strong connections between
auditory cortex regions and the anterior and posterior
STS/STG [Caclin and Fonlupt, 2006; Kumar et al., 2007;
Upadhyay et al., 2008]. This is compatible with the current
findings of the distribution of perceptually-based and
grammar-based processes in AC and STS/STG.

To our knowledge, the current study is the first to report
successful classification of syntactic processing brain states
from multi-voxel activation patterns. Importantly, the most
prominent difference between the univariate and the
multivariate analysis was the left hemispheric lateraliza-
tion revealed by the multivariate pattern classification. In
the present study, the activation estimates used for the
pattern classification were based on a single GLM for each
run, which provided a lower signal-to-noise ratio for these
estimates than in the univariate approach. This in turn high-
lights the consistency of the left hemispheric neuronal

network involved in syntactic processes [Friederici, 2002;
Herrmann et al., 2009; Kaan and Swaab, 2002; Shtyrov
et al., 2003].

CONCLUSIONS

To summarize, initial syntactic processing of two-word
utterances that contained a phrase structure violation led
to the involvement of the left IFG, the left aSTG, the left
STS and the right STS/STG, with some indications of a left
hemispheric predominance. The AC, on the other hand,
was only engaged in processing the perceptual aspect,
namely the word category’s suffix, but was not sensitive
to syntactic manipulations. As a consequence, the present
findings offer reconciliation for seemingly contradictory
views on syntax-inflicted sensory cortex modulations and
allow a clear distinction between lower-level auditory
perceptual processes and higher-level syntactic processes.
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