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How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8 –13 Hz) during
retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that
auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In
an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencepha-
lographic response was analyzed in the time–frequency domain. Notably, during the stimulus-free delay interval, alpha power mono-
tonically increased at central–parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic
degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was
combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response
times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal,
cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary,
both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the
stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.

Introduction
Adverse listening situations are challenging. Acoustical adversities
range in severity from phone lines and noisy environments to age-
related hearing loss and cochlear implants. However, the neural con-
sequences of simultaneous adverse listening conditions (i.e., an
acoustic degradation of the speech input) and cognitive effort (i.e.,
processing and memorizing this acoustic input) are unresolved.
From behavioral work, degraded acoustic signals are known to draw
on a listener’s cognitive resources (Rabbitt, 1968; Pichora-Fuller and
Singh, 2006). Specifically, working memory (Pichora-Fuller et al.,
1995; Rudner et al., 2011) and selective attention capacities (Shinn-
Cunningham and Best, 2008; Kerlin et al., 2010) are affected by
acoustic degradation.

How does the neural system respond to degraded acoustic speech
input? Acoustic degradation elicits perceptual uncertainty (Burk-
holder et al., 2005), which is likely to perpetuate into memory storage
phases and interfere with resources required for memory load (Rab-
bitt, 1968; Wingfield et al., 2005; Piquado et al., 2010). As speech
unfolds, auditory encoding and memory storage are intertwined
processes hard to separate. Therefore, an adapted auditory Sternberg

task (Sternberg, 1966) was used to study the neural traces of acoustic
degradation and memory load in a silent delay period without audi-
tory input. We combined three levels of memory load (2, 4, or 6
digits to be retained in memory) with three levels of acoustic degra-
dation (digits were spectrally reduced to 16, 8, or only 4 bands; Drul-
lman, 1995; Shannon et al., 1995) in a magnetoencephalography
(MEG) study.

Our main hypothesis is concerned with the stimulation-free de-
lay period. We expect acoustic degradation to increase perceptual
uncertainty and thus to allocate more cognitive resources during the
silent delay period, for storage of encoded (but potentially inaccu-
rate) items and/or inhibition of interfering information. Impor-
tantly, we expect that exacerbations of acoustic degradation will
exert a similar neural effect as increases in the number of presented
items. We expect these effects in a common alpha (8–13 Hz) oscil-
latory network. Enhanced alpha oscillations have become a well-
documented neural substrate of increased cognitive effort, in line
with a functional, inhibitory role of alpha in controlling or gating
local circuits of neural activity (Klimesch et al., 2007; Jensen and
Mazaheri, 2010; Foxe and Snyder, 2011; Weisz et al., 2011). Accord-
ingly, alpha enhancement as a function of memory load has been
demonstrated unanimously in the Sternberg task, in which items
have to be briefly retained in short-term memory, and higher mem-
ory load is known to elicit longer response times (Jensen et al., 2002;
Leiberg et al., 2006; Nenert et al., 2012; Sander et al., 2012). Thus, the
load effects on alpha power during delay and on response time form
a reliable starting point in the present study; however, our study
claims that acoustic degradation also draws on this alpha oscillatory
network, effectively increasing storage and inhibition demands. In
accordance with the “functional inhibition” hypothesis, we expect
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that alpha activity during stimulus-free delay is predictive of the
expected response time differences. Source localization of alpha
changes during the delay phase will allow us to infer the neural gen-
erators of this alpha-tuned network.

Materials and Methods
Participants. Twenty healthy right-handed participants (10 females),
who had no previous experience with noise-vocoded speech and who
reported no known hearing deficit, took part in this experiment (age
range, 20 –32 years; mean age, 25.9 years). Data of 18 participants could
be included in the final analyses (see below). All procedures were ap-
proved by the local ethics committee (University of Leipzig) and were in
line with the Helsinki Declaration of Ethical Principles for Medical Re-
search Involving Human Subjects.

Study design and stimuli. In an adapted auditory version of the Stern-
berg paradigm (Sternberg, 1966), we used a 3 ! 3 design of the orthog-
onal factors memory load (2, 4, or 6 items in the to-be-memorized set of
items of a trial) and acoustic degradation (16, 8, or only 4 bands in noise
vocoding of the items; see below).

Stimuli used for short-term retention in each trial were edited from
acoustic recordings of spoken digits. To this end, a trained female speaker
recorded the German digit words from “null” (“zero”) to “neun”
(“nine”). Recordings were performed in a soundproof chamber and dig-
itized at 44.1 kHz. Offline editing included cutting at zero crossings and
root-mean-square amplitude normalization; the single-digit audio file
durations were not changed but reflected the naturally spoken digit
length (588 " 63 ms, mean " SD).

Final audio files were additionally submitted to a noise-vocoding al-
gorithm in MATLAB (MathWorks) to create audio versions of variable
degradation for each digit. Noise vocoding is an effective technique to
manipulate the spectral detail while preserving the temporal envelope of
the speech signal (Drullman, 1995; Shannon et al., 1995) and render it
more or less intelligible in a graded and controlled way, depending on the
number of bands used. Less bands yield a less intelligible speech signal.
The technique has been used widely in behavioral and brain imaging
studies previously (Scott et al., 2000, 2006; Faulkner et al., 2001; Davis

and Johnsrude, 2003; Obleser et al., 2007). In vocoding, the bands were
equally spaced using the Greenwood formula (as implemented by Rosen
et al., 1999); the filter center frequencies were linearly spaced on the
log-frequency axis. Figure 1 depicts the filter center frequencies and
bandwidths for 4-band, 8-band, and 16-band speech. The pass band for
filtering into channels/bands and envelope extraction was set to 0.07–9
kHz; the low-pass filter cutoff for the temporal envelope extraction was
set at 256 Hz. Based on previous research as well as pilot digit recognition
tests with naive participants, 4-band, 8-band, and 16-band versions were
used in the final MEG study; of these conditions, 4-band speech was
assumed to be most effortful to the perceptual– cognitive system,
whereas correct identification of the digit (from this small set of 10 digits)
from such degraded audio was still possible (see behavioral performance
below). This is important because we did not aim at manipulating speech
intelligibility per se but first and foremost aimed at manipulating the
perceptual uncertainty and the concomitant effort evoked by degraded
speech (Pisoni, 2000; Burkholder et al., 2005; Pichora-Fuller and Singh,
2006).

Procedure. Figure 1 presents a schematic trial timeline. Each trial con-
tained four intervals of interest. The baseline interval started the trial (fixa-
tion cross for 1000 ms plus a random interval of 0–500 ms). During the
encoding interval, a fixation cross and the 2, 4, or 6 auditory digits were
presented. In the 2- and 4-digit sets, digits were flanked by items of loudness-
matched 1 kHz, 1⁄3 octave bandwidth bandpassed noise with a duration
reflecting the average digit length (i.e., 588 ms) to ensure presentation of six
sounds. All sound files were played with a sound-onset asynchrony of 800
ms, resulting in a total encoding duration of 4800 ms.

This was followed by the delay interval during which the items had to be
retained in memory (the fixation cross stayed on screen; thus, the delay phase
started implicitly after the last of the six sounds). This delay interval lasted
1000 ms at minimum, plus some varying extra time (the identical random
length of 0–500 ms chosen for the baseline period in a given trial).

Finally, the retrieval interval followed. Participants were presented
simultaneously with a question mark and an additional digit (in the same
acoustic degradation level as the digits of this trial during encoding) and
had to decide with a button press (left or right index finger) whether it

Figure 1. Combining memory load and acoustic degradation in a memory paradigm. A schematic trial of the adapted Sternberg task is shown in the top left. Memory load, operationalized as
number of items to be retained [2, 4, or 6 items, flanked by bandpassed noise (BPN) to ensure presentation of 6 auditory events]; speech degradation of the presented items in a given trial,
operationalized as the number of bands used for spectral degradation (16, 8, or only 4 bands). The bottom right indicates the vocoding filter frequencies and bandwidths. The color coding indicates
the hypothesized parametric change of alpha power during stimulus-free delay.
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appeared during encoding (response window of 2000 ms). The “yes/no”–
left/right hand assignment was counterbalanced across participants, and
yes answers were correct in 50% of all trials. Immediate feedback (“cor-
rect,” “wrong,” “too slow”) was presented on-screen after the button
press. A trial was followed by an encouragement to blink and to proceed
self-paced with a button press. Subjects could further pause at their own
discretion between blocks. Total duration was #50 min/participant.

For each cell of the 3 (memory load) ! 3 (acoustic degradation) design
(Fig. 1B) over the course of five runs, we acquired on average 25 trials (#225
trials in total) in randomized order. With respect to the comparably low
number of trials per experimental cell, please note that all analyses were run
as parametric analyses (Obleser et al., 2008). Also, as outlined in detail below,
we used proper first-level (i.e., subject-specific) statistics rather than raw
power change estimates. This effectively standardizes all estimates for the
variance across trials and thus avoids some of the problems potentially aris-
ing from the comparably low number of trials.

Data recording and analyses. Participants lay supine in an electromag-
netically shielded room (Vacuumschmelze). Magnetoencephalographic
signals were recorded using a 306-channel MEG (Vectorview; Elekta
Neuromag Oy). The electrooculogram was also recorded using two bi-
polar (horizontal and vertical) electrode pairs.

The magnetic fields were recorded at a sampling rate of 1000 Hz and
were online filtered with a bandpass of 0.03–330 Hz. During acquisition,
the position of the participant’s head was registered by five head-position
indicator coils. The signal space separation method (SSS; Taulu et al.,
2004) was applied to suppress external noise. The default settings for
signal–interference separation were used (i.e., an SSS basis with Lin $ 8
and Lout $ 3). Also, the SSS method was used to correct for differences in
head position between runs, that is, data from all experimental runs were
recomputed to assume the same head position as the beginning of the
first run. Magnetometer data were only used for interference suppression
and head-position correction. All additional data analyses were per-
formed on the planar gradiometer recordings only.

Offline, the data were analyzed using MATLAB and the FieldTrip toolbox
(Oostenveld et al., 2011). The continuous signal was low-pass filtered at 200
Hz and epoched. There were trials in nine conditions according to variations
in the factors memory load (2, 4, or 6 digits to retain) and degradation (16, 8,
or only 4 bands of spectral resolution of the audio recordings of the digits).
For time–frequency analysis, epochs of %1 to &2 s were extracted from the
signal for baseline, delay, and retrieval intervals and epochs of %1 to &6 s for
the encoding interval. These long epochs were extracted to circumvent win-
dowing problems in the time–frequency analysis; the intervals analyzed sta-
tistically were shorter (see below). A z-score-based algorithm, available in the
FieldTrip toolbox, automatically rejected epochs contaminated by eye
movements using a cutoff value of 4. Remaining artifact-contaminated ep-
ochs were rejected by visual inspection of all channels. Two participants’
datasets were discarded as a result of technical problems while recording the
MEG. Thus, for further data analyses, we used the data of 18 subjects.

On average, '80% of all trials per participant could be retained for
additional analyses. Importantly, no significant differences in rejection
rate per condition occurred (repeated-measures ANOVA with factors
memory load and acoustic degradation, all F ! 1). Thus, it is safe to
conclude that no substantial signal/noise ratio confounds were present in
additional analyses.

To obtain time–frequency representations of the data, trial data were
convoluted with a family of Morlet wavelets (7 cycles width), and the
power spectra for all intervals were estimated from 3 to 30 Hz in 1 Hz
steps and from %1 to &2 s around the baseline, delay, and retrieval
onsets, in steps of 20 ms, and –1 to &6 s around the encoding onset.
Time- and frequency-specific power estimates were computed for each
participant separately for all nine conditions. The time intervals for-
warded to statistical analysis were as follows: (1) 0 –5 s after encoding
onset; (2) 0.4 –1 s after delay onset, skipping the beginning and the vari-
able end of the delay period; and (3) 0 –1 s after probe onset. All these
estimates were baseline corrected (relative change to the mean power
estimate of 0.4 –1 s after baseline onset; Fig. 1) to attain measures of
relative power change per trial for the respective time interval.

Finally, data from the 204 gradiometers (i.e., 102 pairs of gradiometer
channels) were combined in each participant (using the ft_combinepla-

nar function) in all nine conditions, and time–frequency-specific power
estimates at 102 locations were available for statistical analysis.

Statistical analysis. We pursued a two-level statistical analysis. At the
first or individual level, time–frequency representations from all trials
were submitted to a parametric regression test for independent samples
(as implemented in ft_freqstatistics). By setting the contrast coefficients
accordingly, we obtained time–frequency–sensor matrices for each sub-
ject that contained t values for either a memory load effect (6 ' 4 ' 2
items) or an acoustic degradation effect (4 ' 8 ' 16 bands). Attaining
first-level statistics rather than using only average power change com-
pared to baseline has the advantage that the effects that are subsequently
entered into group statistics are effectively standardized for across-trial
variance. Last, matrices of t values were transformed to z-values, because
degrees of freedom slightly varied across subjects as a result of slight
differences in number of trials.

At the second or group level, we submitted the individual z-maps to a
massed cluster-based permutation t test (testing for significant differ-
ences from zero, two-sided, dependent samples, with 1000 iterations; as
outlined by Maris and Oostenveld, 2007). In essence, this procedure
checks for time–frequency–sensor clusters that show parametric effects
of either a decrease or an increase covarying with the manipulated stim-
ulus dimension. The permutation tests for the encoding, delay, and re-
trieval interval included all time–frequency bins across all frequencies
(3–30 Hz) and across all 102 sensors.

Note that this procedure protects at the cluster level against an inflated
false-positive rate otherwise arising from multiple comparisons. In short,
the approach first checks for time–frequency bins that show a significant
permuted t statistic (i.e., the “cluster entry criterion,” p ( 0.05) and then
searches for time–frequency–sensor clusters of bins that behave simi-
larly, considering a minimum of three neighboring sensors as a cluster.
The resulting test statistic assesses significance by comparing the ob-
served cluster-level statistic (summed t values per cluster) to the distri-
bution of all randomized cluster-level statistics, with the final p value
resulting from the proportion of Monte Carlo iterations in which the
cluster-level statistic was exceeded (for details, see Maris and Oostenveld,
2007).

In all intervals of interest (Figs. 1A, 2), two different massed t tests were set
up: one testing for linear effects of memory load and another testing for
linear effects of acoustic degradation. The time–frequency cluster tests did
not readily allow testing for a potential interaction of the two factors. There-
fore, we tested for a potential interaction in the stimulus-delay period by
extracting mean alpha power per condition and subject from those sensors
belonging to both the significant memory and acoustic degradation cluster.
On these data, we calculated a 3 (memory load levels) ! 3 (acoustic degra-
dation levels) repeated-measures ANOVA. A Greenhouse–Geisser corrected
p value is reported for this interaction test.

Behavioral responses were analyzed in a 3 (memory load levels) ! 3
(acoustic degradation levels) repeated-measures ANOVA. Here also,
Greenhouse–Geisser-corrected p values are reported.

Source localization. MEG more than electroencephalography suffers
from individual variations of head-to-sensor arrangement. In contrast,
source space analysis overcomes some of this variability because each
subjects’ reconstructed brain can be spatially normalized using the MRI
and coregistered to the same reference space. Therefore, to overcome this
and other inherent limitations when interpreting sensor-space topogra-
phies (Lopes da Silva, 2004), alpha activity during delay was projected to
source space using an adaptive spatial filter in the frequency domain
[dynamic imaging of coherent sources (DICS); Gross et al., 2001]. The
DICS technique is based on the cross-spectral density (CSD) matrix,
which was obtained in every trial and condition by applying a multitaper
fast Fourier transform estimate of the time windows and frequencies of
interest (here yielding CSD estimates centered at 10 Hz with a 2 Hz
spectral smoothing on each side and a window length of 500 ms centered
at 750 ms after delay onset).

For source localization, we chose a procedure used in various previous
studies localizing oscillatory power (Medendorp et al., 2007; Haegens et
al., 2010; Hipp et al., 2011; Obleser and Weisz, 2012). T1-weighted MR
images were aligned with individual head shapes as acquired during
MEG. A realistically shaped single-sphere model was used as volume
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conductor (Nolte, 2003), and the lead field was calculated at each point in
a grid with a 1 cm resolution. It is of note that, rather than constructing
individual grids, we constructed a template grid in the MNI space tem-
plate brain (as used in SPM8) and then warped these grids into individ-
ual, native space using individuals’ inverse homogenous transformation
matrices (as derived when spatially normalizing individual MR images).
This allows to do statistics on a common grid.

Using the CSD data, a spatial filter was constructed for each grid point,
and the spatial distribution of power was estimated for each condition in
each subject. A common filter was constructed from all baseline and
delay segments (i.e., based on the CSD matrices of the combined condi-
tions). Subject- and condition-specific solutions reflected relative alpha
power change in the delay period for each grid point.

On these grid-point-wise source power changes, we performed
source-level cluster statistics (following the same logic as outlined for
sensor-level statistics above). To infer tentatively on the brain structures
generating the scalp topographies (Fig. 2), we tested for grid points with
significant overall alpha increase compared with baseline (i.e., collapsing
across conditions). For illustration purposes, significant clusters at the
grid level were interpolated to a 3D standard MR template (in MNI
space) and plotted (see Fig. 4, top row; bottom row shows the same data
being plotted onto brain areas as outlined in the automatic anatomical
labeling atlas; Tzourio-Mazoyer et al., 2002).

Results
Time–frequency changes during stimulus-free delay
The main hypothesis of this study concerned the stimulus-free
delay period while items were retained in memory (“delay”; Fig.
2, middle; see also Figs. 3, 4). We expected alpha power to in-
crease as a function of number of retained items but also of acous-
tic degradation of these items and also tested for any interaction
of these two manipulations.

Higher memory load elicited an increase in alpha power at
right parietal– central sites that was linearly dependent on num-
ber of items to retain: one significant positive cluster was found
for the analysis of the effect of memory load (p $ 0.007). How-
ever, such a significant cluster was also found for the effect of
acoustic degradation (p $ 0.02). Thus, alpha power during delay
was also a function of acoustic degradation during the encoding
of the presented items. These two clusters overlapped in topog-
raphy (Fig. 2), with the cluster for memory load extending more
frontally. A significant interaction of these two effects was also
present (F(2,34) $ 7.02, Greenhouse–Geisser " $ 0.65, p $ 0.001).
Inspection of the data implies that this interaction is best de-

Figure 2. Time–frequency response during encoding, delay, and retrieval phases. All panels show t values (N $ 18) for parametric effects of memory load (top row) and degradation (bottom
row), separately for the encoding phase (left column), delay phase (middle column), and the retrieval phase (right column). Waveforms at the top schematically indicate the presented sound. Top
and bottom rows show time–frequency plots of t values, averaged across sensors that belong to the respective significant cluster. Positive t values (i.e., more alpha activity for higher load or more
severe degradation, respectively) are shown in hot colors and negative values in cold colors. Line plot, For the delay period (middle panels), the distribution of memory load (black) and degradation
(red) effect sizes over frequencies confirms an alpha peak for both effects. The sensors contributing to the significant memory load and degradation clusters are indicated by dots in the series of sensor
topographies over time (left middle).
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scribed as an “expansive” function for al-
pha power (Fig. 3A,B). When plotting
alpha power as a function of both number
of items and degree of acoustic degrada-
tion, alpha power appears higher than ex-
pected from the two main effects at most
severe degradation (4 bands) and at the
highest load (6 items). At the same time,
alpha power appears to “undershoot”
when combining least degradation (16
bands) with least load (2 items only).

The right middle row of Figure 2 shows
the frequency specificity of the alpha-
band effect. When plotting the average
z-values across subjects (from the first-
level statistics) as line graphs, the effects of
degradation and memory load both peak
in the alpha-band range (peak difference
in hertz; n.s.). Both effects also show a
subpeak in the beta-band (15–25 Hz)
range, but these were not borne out by the
cluster-based permutation test as sig-
nificant by themselves. Thus, during
stimulus-free delay, memory load and
acoustic degradation are not separable
based on exact alpha frequency.

Time–frequency changes during
encoding and during retrieval
Although the main hypothesis of this
study was concerned with the stimulus-
free delay period, we also analyzed the ex-
perimental encoding and retrieval phases
on the sensor level. In all three post-
baseline periods of the experiment (encoding, delay, and re-
trieval), we tested for significant time–frequency–sensor clusters
(Fig. 2).

During encoding, this yielded alpha-frequency clusters, that
is, alpha power was found to increase already during encoding
depending on the two manipulations. One significant positive
cluster was found for the memory load effect (p $ 0.018). Also,
one cluster was found for the acoustic degradation effect (p $
0.009). Both clusters showed sensor distributions similar to the
one shown for the ensuing delay phase in the middle row of
Figure 2.

For brain activity at and after the probe (i.e., during retrieval;
Fig. 2, right column), the cluster-based permutation test for ef-
fects of memory load revealed one early (0 –200 ms) positive
cluster (p $ 0.029) reflecting the same pattern seen during delay.
More notable, one late (#600 – 850 ms) negative cluster (p $
0.008) was also observed. That is, alpha power was suppressed as
a function of the number of items to be “released from memo-
ry”—the inverse effect of what was seen during encoding and
delay. In sharp contrast to this, acoustic degradation yielded one
extended, positive cluster (p $ 0.034), indicating that more se-
vere degradation of the probe triggered renewed alpha enhance-
ment (Obleser and Weisz, 2012).

Behavioral results and correlation with delay-phase alpha
As expected in a Sternberg paradigm, listeners performed very
well in all memory load conditions, and, as intended, the chosen
acoustic degradation levels did not hinder their performance.
Average " SD performance across conditions was 95 " 3% cor-

rect, with average condition performances ranging from 91 to
100%. No effects of memory load or acoustic degradation at-
tained significance.

Figure 3C shows the response time data. Response times to the
probe confirmed the known Sternberg effect (longer response
times to more items, main effect of memory load, F(2,34) $ 22.0, "
$ 0.79, p ( 0.0001) but also showed a main effect of acoustic
degradation (longer response times to stronger degradation;
F(2,34) $ 18.4, " $ 0.99, p ( 0.0001). Given the overall very
accurate performance, reaction time patterns did not change
whether or not only correct trials were analyzed, and the few
erroneous trials are included here.

Notably, the mean response times per condition were well
predicted by the respective mean alpha power change during the
preceding delay phase (Pearson’s r $ 0.889, p ( 0.001; Fig. 3D).

Source localization
For alpha power changes during stimulus-free delay, we used an
adaptive spatial filter in the frequency domain (DICS; Gross et al.,
2001) to localize the most likely sources of the alpha power in-
crease. This was done across conditions (delay ' baseline) to
assess the most likely neuroanatomical brain source for the ob-
served alpha increase during delay. Results are shown in Figure 4.

When testing for voxels showing alpha power increase during
delay compared with baseline in a one-sample t test, a significant,
spatially extensive cluster was found (p ( 0.04). The cluster
ranged from right superior parietal cortex down to right poste-
rior supramarginal gyrus (SMG), extending ventrally as far as
right posterior superior temporal gyrus and medially into precu-

Figure 3. Alpha enhancement during delay and relation to response time. A, Mean alpha power change during delay (8 –13 Hz,
0.4 –1 s; the inset sensor topography shows the used sensors; those sensors were part of both the memory load cluster and the
degradation cluster). Means " 1 within-subject standard error are displayed. Note the cumulative effects of memory load (mem-
ory load, left to right) and degradation (less number of bands, also left to right). B, Subadditivity and superadditivity of alpha
power. Alpha power (data identical to A) replotted as a two-dimensional function along the two manipulated dimensions (load,
more items; degradation, less number of bands). Note the alpha overshoot (red) for most severe degradation/highest number of
items and alpha undershoot (blue) for least degradation/least number of items. C, Mean response time per condition. Means " 1
within-subject standard error are displayed. D, Scatter plot of mean response time (x-axis; data identical to C) versus mean alpha
power during delay ( y-axis; data identical to A) with linear regression line.
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neus (Fig. 4). This corroborates well the overall pattern seen in
the gradiometer topographies (Fig. 2, middle row).

Beamformer methods are known to encounter difficulties in
resolving correlated sources, for example, from simultaneously
active bilateral auditory cortex (Dalal et al., 2006). However, this
potential problem is unlikely to have occluded bilateral auditory
activity here, because the gradiometer sensor maps (Fig. 2) did
not hint at bilateral auditory temporal sources as generators of
the alpha effects during the delay period. This was then con-
firmed and neuroanatomically specified in the DICS source lo-
calization (Fig. 4).

Discussion
How does acoustic degradation affect the neural mechanisms of
auditory working memory? Here, we tested the hypothesis that a
neural “executive control” (i.e., storage and/or inhibition) sys-
tem, expressed as enhanced alpha power during working mem-
ory retention, would be additionally affected by acoustic
degradation of the to-be-memorized speech material.

The most important finding was a significant right temporo-
parietal alpha enhancement during auditory memory retention.
This enhancement in #10 Hz power was not only parametrically
driven by the memory load (more number of items; cf. Jensen et
al., 2002) but also by adversity of the acoustic signal (more severe
degradation; Figs. 2, 3). In accordance with the prolonged reac-
tion times (Fig. 3C), the preceding alpha power enhancements
during the delay phase reflect the varying cognitive demands. The
new finding is that, at this comparably late and stimulation-free
stage of memory retention, acoustic degradation does affect this
process considerably.

The alpha enhancement attributable to more severe acoustic
degradation was found to be additive to the alpha enhancement
attributable to more stored items: acoustic degradation (a per-
ceptual challenge) and memory load (a capacity challenge) both
draw on a neural system subserving “functional inhibition”

(Klimesch et al., 2007; Jensen and Mazaheri, 2010). Condition-
specific alpha power changes illustrate this (Fig. 3A,B): the aver-
age alpha power while retaining 2 items presented in severely
degraded quality (4-band speech) approximately equals the aver-
age alpha power while retaining 4 (rather than only 2) items in
least degraded quality (16-band speech).

Importantly, the alpha-change pattern also showed a signifi-
cant interaction, best characterized as an “expansive” (i.e., non-
linear) response function (Miller and Troyer, 2002; Duong and
Freeman, 2008; Fig. 3A,B). Summations of memory load and
acoustic degradation led to subadditive and superadditive re-
sponses of the alpha network, respectively. This is evident when
plotting alpha power during stimulus-free delay as either a
monotonic function of both manipulations (Fig. 3A) or as a two-
dimensional function of both manipulations separately (Fig. 3B).
An expansive response function can serve as an internal,
sensitivity-enhancing mechanism, and particularly the super-
additive alpha response to combinations of many items and se-
vere degradation is commensurate with this interpretation.

Unlike fMRI, magnetoencephalographic source localization
in humans offers temporal and spectral specificity (here by local-
izing only alpha-band activity and only during the delay period).
As suggested by the gradiometer topographies (Fig. 2), alpha
power in the delay phase emerged mainly from posterior parietal
cortex, in line with the often reported posterior alpha network
(Foxe et al., 1998; Laufs et al., 2006). As illustrated in Figure 4, the
significant cluster extends into the SMG and the temporo-
parietal junction (TPJ), both being hotspots in verbal working
memory (Paulesu et al., 1993; Jacquemot et al., 2003; Jacquemot
and Scott, 2006; Obleser and Eisner, 2009). Obleser and Eisner
(2009) have argued that the SMG should operate on a post-
categorical “abstract” code, in line with its important role in the
“phonological store” concept (Jacquemot and Scott, 2006; Bu-
chsbaum and D’Esposito, 2008). The present data concur with

Figure 4. Source localization of alpha enhancement during delay. Top row illustrates the source-level cluster ( p ( 0.05) exhibiting an overall alpha power enhancement compared with baseline,
with t values from the significant cluster displayed on a standard MR template. Bottom row shows the data plotted on the automatic anatomical labeling atlas. Sup, superior; Inf, inferior.
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these suggestions and emphasize how intertwined speech percep-
tion and verbal working memory are, particularly when coping
with degraded input (Eisner et al., 2010).

The source localization also suggests contributions from pre-
cuneus and posterior cingulate cortex. Involvement of this area
ties in well with the “functional inhibition” interpretation of al-
pha activity and is suited to reconcile alpha-oscillation-based the-
ories with more general models on executive control. Inhibitory,
“top-down” control over task-irrelevant processes and over po-
tentially erroneous behavior is likely to critically depend on the
alpha-frequency domain (Klimesch et al., 2007; Jensen and
Mazaheri, 2010), within as well as across brain areas. Concomi-
tantly, recent functional imaging studies have pointed out that
suppression of BOLD activity (often reported to be anticorrelated
with alpha power, Laufs et al., 2003; Sadaghiani et al., 2010) in
cingulate areas (i.e., the “default” network, as well as in the TPJ) is
pivotal to successful working memory performance (Anticevic et
al., 2010, 2011; Reas et al., 2011). In line with these studies and an
inhibitory function of alpha, we find alpha power in temporo-
parietal and posterior cingulate areas to be affected by our num-
ber of items and acoustic degradation manipulations.

Notably, the presented data do not indicate a strong involve-
ment of domain-specific, auditory areas in this alpha network,
the only exception being the extension of the significant cluster
into the right superior temporal gyrus (BA 41; Fig. 4). The present
data rather imply that most neural correlates of increased effort
do not manifest in auditory regions (at least not during delay, i.e.,
when no sound input is present). This is important for the audi-
tory neuroscience of degraded hearing and aging, and functional
MRI studies of listening to degraded speech have pointed in this
direction before (Sharp et al., 2004; Harris et al., 2009). The
current study transcends these important imaging studies in
dissecting the influence of (modality-specific) acoustic degra-
dation from the influence of (modality-unspecific) load and in
providing a real-time and frequency-specific measure of exec-
utive control.

The present results have implications for the neural bases of
degraded hearing and aging alike. In degraded hearing and co-
chlear implants, sensory degradation is without doubt accompa-
nied by increased effort at multiple cognitive processing stages
(Wingfield et al., 2005; Pichora-Fuller and Singh, 2006). These
additional challenges might draw on neural resources that will in
turn be lacking for other cognitive tasks (Heinrich and Schneider,
2011; Obleser and Weisz, 2012). Our study pinpoints this “dou-
ble taxation” arising from sensory degradation and additional
cognitive demands to a cingulate–parietal alpha oscillation net-
work. Future studies can build on this and compare measures of
the alpha oscillatory network in chronically hearing-impaired
subjects.

The present results also provide evidence that processes, such
as storage or inhibition reflected here in enhanced alpha power
during working memory retention, are affected by both signal-
dependent and capacity-dependent challenges. Recall, however,
that the overall difficulty of the Sternberg task was not approach-
ing participants’ capacity limits, even at the worst level of acoustic
degradation; participants performed above 90% in all conditions.
Neither were the alpha-network dynamics reaching saturation, as
expressed by the expansive response behavior (Fig. 3A,B). A nec-
essary next step to further validate our hypothesis (a shared cog-
nitive resource affected by degradation and memory load alike)
would be to explore cognitive capacities closer to their near max-
imum and test the influence of acoustic degradation accordingly.
Only behavioral evidence pointing in this direction is available

(Burkholder et al., 2005); the authors tested listeners’ actual ca-
pacity limits (digit span) in vocoded speech and predicted this
limit from the accuracy to identify the degraded single items. Our
setup, instead, allows measuring the neural consequences of de-
graded (and potentially inaccurate) information.

Finally, recall that alpha power was modulated already during
the 5-s-long presentation (i.e., the encoding) of the stimuli, by
memory load as well as by acoustic degradation (Fig. 2). This is in
line with the hypothesis of increased effort in neurally encoding
degraded stimuli. Arguably the most important difference be-
tween visuospatial and auditory tasks is the dependence on the
unfolding of time (Shamma, 2001): more so than in vision, the
time required for encoding six digits (or, more realistically, an
ongoing conversation) will trigger a neural cascade of encoding
and retention in memory.

The most striking difference between the memory load and
acoustic degradation manipulations occurred after the “probe”
digit but before the participants’ response. Although the load-
dependent alpha showed a “rebound” or suppression of alpha
after the trial-final probe digit (a “release from memory”), the
degradation-dependent alpha exerted another sustained alpha
power increase in response to the degraded probe (again, para-
metrical with degradation severity; Fig. 2, compare right top with
right bottom).

In conclusion, alpha oscillations during a stimulus-free delay pe-
riod pose a composite measure of cognitive effort. High alpha power
is thought to reflect the enhanced need for “functional inhibition”
(Jensen and Mazaheri, 2010). We show for the first time that this
mechanism of enhanced alpha power is not only modulated by
changing domain-general requirements such as the number of
stored items: challenges arising from mild to severe sensory degra-
dation do affect this system, too, and both manipulations cause an
enhancement of oscillatory power in the same time–frequency
range, in a nonlinear manner (Fig. 3). Also, these alpha responses
appear to be generated by a primarily overlapping set of neuroanat-
omical structures. These findings have implications for our under-
standing of alpha-driven executive control networks as well as for
our concepts on how elderly and hearing-impaired listeners can en-
counter their sensory difficulties.
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