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The Brain Dynamics of Rapid Perceptual Adaptation to
Adverse Listening Conditions

Julia Erb,' Molly J. Henry,' Frank Eisner,> and Jonas Obleser!
"Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany and 2Max
Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands

Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such
short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition,
human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved,
while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on ampli-
tude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening
conditions for speech and non-speech. First, the degraded speech task revealed an “executive” network (comprising the anterior insula
and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctua-
tions in successful comprehension of degraded speech drove hemodynamic signal change in classic “language” areas (bilateral temporal
cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was
observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks,

respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

Introduction

Humans have the capability to rapidly adapt to degraded or al-
tered speech. This challenge is particularly relevant to cochlear
implant (CI) patients adapting to an extremely distorted auditory
input delivered by their device (Giraud et al., 2001; Fallon et al.,
2008). The current study investigated the short-term neural pro-
cesses that underlie this adaptation to degraded speech using
functional magnetic resonance imaging (fMRI).

We simulated Cl-transduced speech in normal-hearing listeners
using noise-vocoding (Shannon et al., 1995), which degrades the
spectral detail in an auditory signal, and forces the listener to rely
more on the (intact) temporal envelope cues for speech comprehen-
sion. Listeners with higher sensitivity to envelope fluctuations in an
auditory signal, as measured by amplitude modulation (AM) rate
discrimination thresholds, adapt more quickly to vocoded speech
(Erb et al., 2012). Therefore, we predicted that temporal envelope of
non-speech sounds (Giraud et al., 2000) and vocoded speech should
be processed by shared neural resources.

Rapid perceptual learning of vocoded speech is a well estab-
lished finding of behavioral studies (Rosen et al., 1999; Davis et
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al., 2005; Peelle and Wingfield, 2005; Bent et al., 2009), but its
neural bases are largely unknown. Recently, increased precentral
gyrus activity was associated with boosted perceptual learning
during the joint presentation of vocoded and clear words
(Hervais-Adelman et al., 2012). Further, in a simulated CI reha-
bilitation program that supplemented presentation of vocoded
sentences with simultaneous written feedback, perceptual learn-
ing relied on the left inferior frontal gyrus (IFG; Eisner et al.,
2010). However, in everyday situations, listeners rarely receive
direct feedback. Therefore, the neural dynamics of feedback-free
or self-regulated adaptation are investigated here.

Subcortical structures likely play a critical role in adaptation to
degraded speech, but the specific contributions of distinct struc-
tures are unclear. A recent voxel-based morphometry study dem-
onstrated that gray matter volume in the left pulvinar thalamus
predicted how fast listeners adapted to vocoded speech (Erb et al.,
2012). However, previous fMRI studies have failed to detect
adaptation-related signal changes in subcortical regions, possibly
due to these brain areas’ susceptibility to MR artifacts. Here, we
implemented a cardiac-gated image acquisition procedure,
thereby avoiding heartbeat-related artifacts.

The present fMRI study sheds new light on perceptual adap-
tation to degraded speech with respect to four points: (1) we
investigate the convergence of neural mechanisms underlying
effortful speech and non-speech processing; (2) we test feedback-
free, short-term adaptation; (3) unlike previous perceptual learn-
ing studies (Golestani and Zatorre, 2004; Adank and Devlin,
2010; Eisner et al., 2010), we collect word report scores on every
trial and are able to model both trial-by-trial fluctuation in com-
prehension and adaptation to degraded speech; and (4) we assess
subcortical contributions to adaptation. We show that an “exec-
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Stimuli and experimental design

Degraded sentence
“Gewohnlich nutzen wir die Rader”

o

Clear sentence
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Butterworth lowpass filter with a cutoff fre-
quency of 400 Hz. Noise-vocoding was applied
to all sentences in MATLAB 7.11 as described
in Rosen et al. (1999) using four frequency
bands spanning 70-9000 Hz that were spaced
according to Greenwood’s cochlear frequency-
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position function (Greenwood, 1990; for full
settings see Erb et al., 2012). The waveform and
spectrogram of the vocoded and clear version
of an example sentence are shown in Figure 1A.

On each trial, participants first heard a sen-
tence. They were instructed to repeat as much
of the sentence as they had understood when a
green light appeared on the screen, but to stop

talking when the green light disappeared (after
3 s) to avoid movement during scan acquisi-
tion (Fig. 1B). Speech production was recorded
for later off-line scoring (Eckert et al., 2009;
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Figure 1.

speech trials (inserted after every fifth trial), and 20 randomly interspersed silent trials.

utive” system (Eckert et al., 2009) is recruited when actively cop-
ing with difficult speech and non-speech listening conditions. In
contrast, activations in the classic “language” network (Scott et
al., 2000; Hickok and Poeppel, 2007) are driven by trial-by-trial
fluctuations in speech comprehension, not acoustic speech clar-
ity. Finally, we demonstrate that rapid adaptation to degraded
speech is accompanied by hemodynamic downregulation in a
cortico-striato-thalamo-cortical network.

Materials and Methods

Participants

Thirty participants (15 females, age range 21-31 years, mean 25.9 years)
took part in the study. Participants were recruited from the participant
database of the Max Planck Institute for Human Cognitive and Brain
Sciences. All were native speakers of German with no known hearing
impairments, language or neurological disorders and showed dominant
right-handedness according to the Edinburgh inventory (Oldfield,
1971). They were naive to noise-vocoded speech. Participants received
financial compensation of €16, and gave informed consent. Procedures
were approved by the local ethics committee (University of Leipzig).

Stimuli and experimental design

Experiment 1. Sentence material was drawn from a German version of the
speech in noise (SPIN) sentences (Kalikow et al., 1977; Erb et al., 2012),
which is controlled for the predictability of the final word (high vs low
predictability). For the present study, only low-predictability sentences
were chosen, such that semantic cues were limited and the listener had to
rely primarily on acoustic properties of the sentence for comprehension.
A complete list of these sentences is available in Erb et al. (2012).

The sentences were recorded by a female speaker of standard German
in a sound proof chamber. The length of the recorded sentences varied
between 1620 and 2760 ms. Sentences were degraded using 4-band noise
vocoding. This procedure divides the raw signal into frequency bands,
extracts the amplitude envelope from each band, and reapplies it to
bandpass-filtered noise carriers, thereby smearing spectral fine structure.
For envelope extraction, we used a second-order, zero-phase

Stimuli and experimental design. 4, Oscillogram (top) and spectrogram (bottom) of the sentence “Gewdhnlich
nutzen wir die Rader” (Normally we use the bikes) in degraded (left) and clear speech (right). B, Trial structure in Experiment 1and
2. After acoustic presentation of a sentence or AM stimulus (lasting for ~2.5 s), participants were prompted to respond when
green lights appeared on a screen (lasting for 3 s) by repeating the sentence or pressing a button. Subsequent scan acquisition was
initiated by cardiac gating. The onset of auditory stimulation preceded the anticipated scan acquisition by a period of 6.5 s,
although the actual scan time was variable due to cardiac gating. C, Experiment 1 comprised 100 degraded speech trials, 24 clear

...144 Trials

T T >

Time [s] Harris et al., 2009). Responses were scored as
proportions of correctly repeated words per
sentence (“report scores”; Peelle et al., 2013).
Scoring took into account all words of a sen-
tence including function words; errors in de-
clension or conjugation were accepted as
correct.

Clear speech trials were used as a high-level
baseline. Clear speech can be assumed to be
fully adapted, and therefore to be processed in
a stable way over time. This ensured that no
neural adaptation would occur in the baseline
condition, whereas another type of artificial
speech degradation (e.g., rotated speech)
might have led to neural adaptation (even in
the absence of behavioral adaptation).

In sum, Experiment 1 comprised three conditions: (1) 4-band vo-
coded sentences (“degraded speech”; 100 trials in total), (2) clear (non-
vocoded) sentences (“clear speech”; 24 trials in total), and (3) trials
lacking any auditory stimulation (“silent trials”; 20 trials in total). Over-
all, the experiment comprised 144 trials. Clear speech trials were pre-
sented every fifth trial, whereas the silent trials were randomly
interspersed (Fig. 1C). Sentences were presented to each participant in
one of four different orders; presentation order was counterbalanced
across participants.

Participants’ adaptation curves. As in Erb et al. (2012), we modeled
each individual’s performance improvement in two different ways: as a
power law and as a linear performance increase. To test which function
would better describe the data, both curves were fitted to the individual
report scores over time using a least-squares estimation procedure in
MATLAB 7.11 (for example fits to the scores averaged over participants,
see Fig. 2A). We compared goodness of fit by determining the Bayesian
information criterion (BIC; Schwarz, 1978) of the linear and the power
law fits within each participant.

Experiment 2. Stimuli were 1 s long sinusoidally amplitude-modulated
white noises. The standard stimulus was modulated at 4 Hz. Deviant
stimuli were modulated at seven different rates that were linearly
spaced between 2 and 6 Hz in steps of 0.67 Hz. The middle level was
modulated at the same rate as the standard (4 Hz); critically, in this
condition participants were unable to distinguish standard and devi-
ant, but still performed the same task. Modulation depth was kept
constant at 60%. The onset phase of the sinusoidal modulation was
randomly varied for all stimuli, separately for the standard and devi-
ant. Standard and deviant stimuli were presented with an interstimu-
lus interval of 500 ms.

The paradigm was a two-alternative forced choice task: on each trial,
participants first heard the standard stimulus (modulated at 4 Hz) fol-
lowed by one deviant stimulus. After auditory presentation of the sound
pair, participants were prompted to respond when a green light appeared
on the screen (Fig. 1B). Half of the participants were to indicate which
sound had a faster modulation rate, while the other half’s task was to

degraded

I W clear
silent
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indicate which sound had a slower modulation
rate to counterbalance button presses. Partici-
pants responded via a button box in their right
hand by pressing the left (for first sound) or
right key (for second sound).

In sum, there were seven levels of deviant
AM rate (comprising 16 trials each); in addi-
tion, we interspersed silent trials lacking any
auditory stimulation (16 trials). On the whole,
every participant listened to 128 trials in a
pseudorandom order where trials of the same
condition were never presented subsequently.

Experimental procedure

To maximize the comparability between indi-
viduals, all participants were tested in the same
order, namely degraded speech perception first
(Experiment 1), followed by AM rate discrim-
ination (Experiment 2). Before participants
went into the scanner, they were familiarized
with each of the two tasks; they listened to three
8-band vocoded GSPIN sentences as training
for Experiment 1 and three exemplary trials of
Experiment 2.

In the scanner, to prevent hearing damage
due to scanner noise, participants wore Alpine
Musicsafe Pro earplugs, yielding approxi-
mately linear 14 dB reduction in sound pres-
sure up to 8 kHz. Auditory stimuli were
delivered through MR-Confon headphones
using Presentation software. Visual prompts
were projected on a screen which participants
viewed via a mirror.

Trial timing was identical in Experiment 1
and 2. Each trial was ~9 s long, but actual trial
length varied due to cardiac gating (see below).
Trials started with a 1 s silent gap, after which
participants heard a sentence (Experiment 1)
or two AM-modulated stimuli (Experiment 2)
lasting for ~2.5 s. Following stimulus presen-
tation (3.5 s into the trial), a green light (“go
signal for response) was visually presented and
lasted for 3 s. After ~1 s of silence, scan acqui-
sition with a TR of 2 s was triggered using car-
diac gating. Thus, the onset of auditory
stimulation preceded the anticipated scan ac-
quisition by ~6.5 s (Fig. 1B).

MRI data acquisition

MRI data were collected on a 3 T Siemens
Verio scanner. Blood oxygenation level-
dependent (BOLD) fMRI images were ac-
quired with a 12-channel head coil using an
echo-planar imaging (EPI) sequence [TR =
9000 ms, TA = 2000 ms, TE = 30 ms, flip
angle = 90°, 3 mm slice thickness, 30 axial
slices (ascending), interslice distance = 1
mm, acquisition matrix of 64 X 64, voxel
size = 3 X 3 X 3 mm] in two separate runs
for Experiment 1 and 2. The acquisition ma-
trix was placed such that the x-axis was in
line with the anterior—posterior commissure
(AC-PC). We used a sparse-sampling proce-
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Figure 2. A, Behavioral adaptation to degraded speech. Linear (red solid line) and power law fit (dashed line) to mean report
scores averaged over participants (left). Two examples of participants with a steep slope (top) and a shallow slope (bottom) in their
linear fits (“adaptation curves”). Although there s a general increase in performance, it is clearly visible that report scores strongly
fluctuate from trial to trial (right). B, Effects of auditory stimulation in Experiment 1. Auditory cortices (HG, STG) and the MGB were
active when participants listened to sound (degraded and clear speech) compared with silent trials, confirming that the hemody-
namic response to auditory stimulation was captured by the scans. L, left; R, right. Error bars indicate SEM.

to their left ring finger. On each trial, after 9 s had elapsed, the scanner

dure, where TR was longer than TA, allowing for silent periods to play  waited for the first heartbeat to trigger volume acquisition. Thus, the

stimuli and record verbal responses (Hall et al.,

1999). actual repetition time (TR) was variable but amounted to 9.45 * 0.27 s

Additionally, cardiac gating was applied to avoid movement artifacts ~ (mean * SEM; across all participants).
caused by the heartbeat in subcortical structures (von Kriegstein et al., Following functional imaging, a T1-weighted structural image was
2008), in which we were especially interested. Participants’” heartbeat was ~ acquired with a 32-channel head coil using an MPRAGE sequence
monitored using an MR-compatible pulse oximeter (Siemens) attached [TR = 1300 ms, TE = 3.5 ms, flip angle = 10°, 1 mm slice thickness,
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176 sagittal slices, acquisition matrix of 256 X 240, voxel size = 1
3
mm”].

In one participant, we were only able to acquire 136 (as opposed to
144) scans for Experiment 1 due to technical problems with cardiac
gating. A second participant had to be excluded from all analyses con-
cerning Experiment 2, because scan acquisition had become desynchro-
nized with stimulus presentation.

Data analysis

Preprocessing. MRI data were analyzed in SPM8 (Wellcome Trust Centre
for Neuroimaging, London, UK). Preprocessing was performed sepa-
rately for Experiment 1 and 2. Structural MRI scans were manually
aligned with the coordinate system such that AC-PC was in line with the
x-axis and AC in the origin of the coordinate system. Functional images
were realigned and unwarped using a field map, coregistered with the
structural scan, segmented and normalized to standard space (Montreal
Neurological Institute [MNI] space) using the segmentation parameters,
and smoothed with an isotropic Gaussian kernel of 8 mm full-width at
half-maximum (FWHM).

MR images were statistically analyzed in the context of the general
linear model. We set up three different models for Experiment 1 and one
model for Experiment 2 to assess the following effects:

Effects of auditory stimulation. In a basic model for Experiment 1, we
defined three conditions at the single subject level: degraded speech, clear
speech, and silent trials. The effect of auditory stimulation was tested by
contrasting sound (degraded and clear speech) against silent trials. To
avoid overspecification, silent trials were removed from all subsequent
analyses.

Effects of speech degradation and trial-by-trial fluctuation with compre-
hension. In a speech-degradation model, we included two conditions:
degraded and clear speech. Additionally, a parametric modulator of the
degraded speech trials was defined, representing the behavioral report
scores. A regressor of no interest, containing report latencies, was added
to account for differences in speech production (analysis explained in
detail below); this regressor was included in all remaining analyses. To
assess effects of stimulus clarity, we contrasted degraded against clear
speech trials. To reveal effects of trial-by-trial fluctuations in speech com-
prehension, we assessed correlations with the regressor representing re-
port scores.

Effects of perceptual adaptation. To model effects of adaptation, we
looked for signal changes over time corresponding to participants’ slow
performance increase (“adaptation curves”). However, there are a num-
ber of unspecific reasons why the BOLD signal could gradually change
over time, for example, scanner drift or fatigue of the participant. There-
fore, we compared the changes over time for vocoded speech to the
change in activity seen for the clear speech condition, while taking into
account the behaviorally observed adaptation to vocoded speech: rather
than simply testing a condition X time interaction (which would not
consider the adaptation curve of a listener), we tested for the three-way
interaction for condition X time X behavior.

To this end, we created two parametric modulators, one for each con-
dition, by multiplying time (i.e., trial number) with the linear adaptation
curves. This resulted in a quadratic curve for the degraded speech regres-
sor of which the slope was dependent on the individual adaptation curve
(Fig. 5, top). However, since there was no perceptual adaptation in the
clear speech condition (all sentences were fully comprehended), the “ad-
aptation” curve was flat such that multiplication effectively left the time
regressor unchanged, resulting in a linear curve.

Contrasts tested for the difference in these two regressors, ruling out
the possibility that a slow change over time is due to slow unspecific
signal drifts (which would be present in both conditions; analysis as in
Biichel et al., 1998). Thus, we identified areas where changes over time
are more pronounced in the degraded speech condition (where percep-
tual processing improves) than in the clear speech condition (where
perceptual processing remains stable throughout).

Regressor of no interest for report latency. Although the present study
was designed to image degraded speech perception, parts of the observed
activity may be related to speech production or preparation, because
participants overtly repeated back what they had understood starting
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~3.5 s before scan acquisition (Fig. 1B). In particular, participants’ ver-
bal responses might have been faster for clear relative to degraded speech
trials, perhaps leading to partly imaging the BOLD response to speech
production, but more so for clear speech trials. Therefore, differences in
report latencies might confound the comparison between degraded and
clear speech trials. Similarly, adaptation-related signal changes might
become confounded, as report latencies likely decrease as participants
adapt to degraded speech. To control for this potential confound, we
calculated report latency relative to the onset of the visual response cue
(Fig. 1B). This measure was included at the first level as one single regres-
sor of no interest in all models concerning Experiment 1 (described
above). For trials where participants did not produce an overt response,
the subject-specific mean report latency was entered.

Effects of AAM rate. In Experiment 2 we modeled four conditions; one
for each level of AM rate difference between standard and deviant (re-
ferred to as “AAM rate”): AAM rate = 0 Hz, +0.67 Hz, +1.33 Hz, and
+2 Hz (note: in the AAM rate = 0 Hz condition, the deviant was mod-
ulated also at 4 Hz). To assess a linear correlation with AAM rate, these
conditions were weighted with the contrast vector [—3 —1 1 3] for a
positive correlation and [3 1 —1 —3] for a negative correlation with AAM
rate. Large effects in these contrasts would mean linear scaling with de-
viance from the standard AM rate. In an additional conjunction analysis
(Friston et al., 1999), we tested for the intersection of the effects of AAM
rate and speech degradation.

All described analyses were whole brain analyses. Regressors were
modeled using a finite impulse response comprising one bin. A high-pass
filter with a cutoff of 1024 s was applied to eliminate low-frequency noise.
No correction for serial autocorrelation was necessary because of the long
TR in the sparse-sampling acquisition.

Second level statistics were calculated using a one-sample t-test. Group
inferences are reported at a familywise error (FWE) corrected voxelwise
threshold of p << 0.05, where FWE rate was controlled using random field
theory. Only for the adaptation analyses did we use a slightly more lenient
threshold of p < 0.001, where cluster-extent (k > 20) was corrected based
on a Monte Carlo Simulation (Slotnick et al., 2003). T-statistic maps
were transformed to Z-statistic maps using spm_t2z.m, and overlaid and
displayed on the ch2 template in MNI space included with MRIcron
(Rorden and Brett, 2000).

Lateralization analysis. Processes of comprehension are likely left-
lateralized (Obleser et al., 2007; Rosen et al., 2011; McGettigan et al.,
2012a). We therefore tested for lateralization of activity related to trial-
by-trial fluctuation in speech comprehension. As in the analyses
described above, EPI images first were realigned, unwarped, and coreg-
istered. The images were then segmented using symmetric gray matter,
white matter, and CSF templates, which were created by averaging each
original template with itself flipped along the y-axis (Salmond et al.,
2000). The segmentation parameters were used to normalize the images
to MNI-space, resulting in a normalization to a symmetric MNI template
(Liégeois et al., 2002) and smoothed at 8 mm FWHM. To conduct a
voxel-by-voxel statistical test of laterality, the first level analyses were
performed as described above. Resulting maps were flipped along the
y-axis and compared with the original maps in a paired ¢-test (Bozic et al.,
2010).

Regions of interest analyses. To extract measures of percentage signal
change in the regions identified by the whole-brain analyses described
above, we defined regions of interest (ROIs) using the SPM toolbox
MarsBar (Brett et al., 2002). ROIs were defined as spheres with a
radius of 3 mm centered on the identified peak coordinates. Voxels
within an ROI were aggregated into a single contrast estimate using
the first eigenvariate.

Results
Behavioral results
In Experiment 1, participants reported on average 51.9 = 1.4%
(mean *£ SEM) words correctly per degraded sentence. Perfor-
mance in clear trials was at 99.7 = 0.2% correct.

We compared whether a linear or power law function (Fig.
2A) would better describe the report scores’ increase over time by
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calculating the BIC for each fit and each participant. The BIC
scores for the linear fits (median 242.44, range 217.41-265.11)
were smaller than those for power law fits (median 247.98, range
217.93-269.75), as shown by a Wilcoxon signed-rank test (p <
0.001), indicating that the linear curve better fit the behavioral
data. Thus, we chose the linear fit to describe the participants’
improvement (“adaptation curve”).

A one-tailed t-test on the slopes of the adaptation curves
showed that they were significantly greater than zero (¢4, =
13.18, p < 0.001), indicating that participants adapted to de-
graded speech, i.e., that their speech perception performance
improved over the course of the experiment (Fig. 2A).

In Experiment 2, all participants performed well on the dis-
criminable AM stimuli (mean = SEM = 96.9 = 0.7%). A paired
samples r-test showed that there was no improvement from the
first half (96.9 * 0.7%) to the second half (96.7 *+ 0.9%) of the
experiment (t,q, = 0.34, p = 0.74).

Controlling for speech production-related activations

To dissociate perceptual and response demands, we estimated
report latencies. Report latency in degraded speech trials (977 =
72 ms, mean *= SEM) was significantly longer than in clear speech
trials (662 * 30 ms; t,9) = 9.03, p < 0.001). Moreover, report
latency decreased over time, based on a f-test on the slopes of
linear fits to report latencies as a function of trial (-2.5 = 0.26 X
10 %, mean * SEM; 50, = 9.94, p < 0.001). Therefore, report
latency was regressed out in all fMRI analyses. Importantly, anal-
yses without this regressor of no interest yielded very similar
fMRI activation patterns (results not reported). We take this as
strong evidence that the observed effects are not driven by speech
production, but rather perception.

fMRI results

We found extensive activation of the auditory system when con-
trasting sound against silent trials, in Experiment 1 (Heschl’s
gyrus, HG; planum temporale; superior temporal gyrus, STG;
medial geniculate body, MGB; Fig. 2B) as well as in Experiment 2
(results not shown), confirming that the BOLD response to au-
ditory stimulation was captured by scan acquisition.

Effects of physical speech degradation: degraded versus

clear speech

To reveal regions that are modulated by physical speech degrada-
tion or clarity, we compared vocoded with clear speech trials.
Areas where degraded relative to clear speech yielded an in-
creased BOLD signal included the left supplementary motor area/
anterior cingulate cortex (SMA/ACC), anterior insula, and
caudate nucleus bilaterally. In contrast, clear compared with de-
graded speech yielded higher activations bilaterally in the precen-
tral gyrus spanning the temporal cortices, supramarginal gyrus
(SMG), putamen, posterior cingulate cortex, and angular gyrus
bilaterally (Fig. 3A, Table 1).

AM rate discrimination and degraded speech processing

The magnitude of the AM rate difference between standard and
deviant stimuli (AAM rate) correlated positively with activity in
right HG, left amygdala, and SMG (Fig. 3B; Table 1), signifying
that activity increased with larger deviance from the standard
(and thus easier AM rate discrimination). Conversely, AAM
rate correlated negatively with activity in the ACC/SMA, left
insula, and IFG, meaning that the signal increased as modula-
tion rate differences diminished and discrimination became
more difficult.

Erb et al. o Rapid Adaptation in Difficult Listening

In a series of conjunction analyses, we identified regions com-
monly involved in processing of degraded speech and of AM
stimuli: a conjunction analysis between (1) positive correlation
with AAM rate and (2) clear > degraded speech was significant in
the SMG bilaterally and posterior cingulate. A conjunction of the
inverse contrasts (negative correlation with AAM rate N de-
graded > clear speech) yielded a significant cluster in the SMA/
ACC, insula bilaterally, and left IFG (Table 1). There were no
commonly activated areas for the “cross-over” conjunction “neg-
ative correlation with AAM rate N clear > degraded speech” or
vice versa.

Trial-by-trial fluctuation with speech comprehension

To reveal areas reflecting trial-by-trial fluctuations in speech
comprehension, we tested for correlations with the behavioral
report scores. The BOLD signal linearly increased with improved
comprehension of degraded speech in bilateral temporal cortices
comprising HG, superior temporal sulcus (STS), left IFG, pre-
central gyrus bilaterally, the putamen, the thalamus including
MGB bilaterally, left angular gyrus, frontal medial cortex, poste-
rior cingulate, and cerebellum (Fig. 4). There were no negative
correlations between the fMRI signal and report scores. An addi-
tional voxel-by-voxel laterality analysis of this speech compre-
hension effect (see Materials and Methods) revealed that activity
in the angular gyrus was significantly left-lateralized (Table 1).
Thisisapparent in Figure 4, where angular gyrus activity is seen in
the sagittal slice of the left hemisphere only.

Effects of perceptual adaptation

To identify brain areas that change over time as a function of
adaptation, we compared changes over time between degraded
and clear speech while taking into account the behaviorally ob-
served adaptation, i.e., we tested the time X condition X behav-
ior interaction (Fig. 5, top). Thus, we separated changes over time
due to adaptation (which only occurred in the degraded speech)
from unspecific slow signal changes (which would be present in
both conditions and hence be canceled out in the contrast). As
the behavioral change is marked for vocoded speech but virtually
absent for clear speech, the BOLD signal is expected to change at
different rates (i.e., more change in the vocoded condition
because, on top of scanner drift, adaptation-related signal
changes are present). Therefore, we modeled a more pro-
nounced increase in the vocoded (quadratic increase) than in
the clear speech condition (linear increase). This model sepa-
rates uninteresting signal drifts from the effects due to the
behaviorally observed adaptation.

At a threshold of p(FWE) < 0.05, we found stronger down-
regulation over time in degraded relative to clear speech trials as
listeners adapted in the anteroventral thalamic nucleus (Morel,
2007). At the slightly more lenient threshold of p < 0.001
(cluster-extent corrected), the caudate, frontal regions and an
occipital cluster spanning from the cerebellum to fusiform gyrus
up to the precuneus showed the same effect. Conversely, an ac-
tivity increase over time in degraded more than clear speech with
adaptation was found in the left precentral gyrus and posterior
cingulate cortex (Fig. 5; Table 1).

Discussion

The present study was designed to reveal neural systems that
support rapid perceptual adaptation to degraded speech and con-
tributes three major novel findings. First, degraded more than
clear speech activates an “executive” system, which overlaps with
the neural substrates of difficult auditory discrimination, namely
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Figure 3.

A, Areas sensitive to speech degradation. Degraded relative to clear speech yielded increased activation in the anterior insula, the caudate, the SMA/ACC, and IFG (in red). Conversely,

clear compared with degraded speech revealed increased activity in the temporal cortices, putamen, posterior cingulate, precentral gyrus, SMG and angular gyrus (AG). Estimated percentage signal
change for vocoded and clear trials is shown for selected regions. B, Effects of AAM rate in Experiment 2 and overlaps with Experiment 1. As AM rate difference (AAM rate) between standard and
deviant increased, activity reduced in the SMA/ACCand insula (red). Activity increased with higher AAM rate in right Heschl's gyrus, left SMG and amygdala (blue). The contours of the Z-statistic
maps showing effects of speech degradation are overlaid to illustrate overlaps in activation. A conjunction analysis between the effects of negative correlation with AAM rate and degraded > clear
speech was significant in the SMA/ACC, insula bilaterally, and the IFG; conjunction of the inverse contrasts (positive correlation with AAM rate M clear > degraded speech) reached significance in

the posterior cingulate and SMG bilaterally. L, left; R, right. Error bars indicate SEM.

in the insula and SMA/ACC. Second, BOLD signal in a “lan-
guage” network, comprising auditory, premotor cortices, and left
angular gyrus, depended on speech comprehension rather than
physical clarity of the stimulus. Third, the data provide first evi-
dence that self-regulated perceptual adaptation to degraded
speech co-occurs with a BOLD downregulation of subcortical
structures.

Executive mechanisms in speech and non-speech processing
Degraded more than clear speech evoked enhanced activity in
anterior areas including the insula and the SMA/ACC. This has
been observed consistently for difficult comprehension (Giraud
etal., 2004; Eckert et al., 2009). Clear speech, in contrast, revealed
an expected activity increase in the bilateral temporal cortices
(Scott et al., 2000; Davis and Johnsrude, 2003; Giraud et al., 2004;
Wild et al., 2012a).

When examining to which extent difficult speech and non-
speech perception rely on joint neural substrates, a conjunction
revealed SMA/ACC and the anterior insula bilaterally. This com-
parison pertains directly to contributions of bottom-up (i.e., fi-
delity of AM representations in the ascending auditory pathway)
versus top-down mechanisms (e.g., attentional processes) in de-
graded speech perception. For example, frequency discrimina-
tion learning shows partial specificity to the trained frequency
(Amitay et al., 2006), consistent with a bottom-up account. In
contrast, top-down mechanisms of attention are plausibly in-

volved in perceptual learning (Halliday et al., 2011). Training
improves the ability to attend to a task-specific stimulus dimen-
sion, and discrimination learning occurs even in the absence of a
discriminable stimulus difference (Amitay et al., 2006). Similarly,
speech degradation studies have found evidence for bottom-up
accounts (Sebastian-Gallés et al., 2000; Hervais-Adelman et al.,,
2008; Idemaru and Holt, 2011) as well as top-down accounts of
perceptual learning, in which lexical information aids perceptual
adaptation (Davis and Johnsrude, 2003; Davis et al., 2005).

The structures commonly recruited for degraded speech pro-
cessing and AM discrimination are clearly not specific to auditory
envelope processing, but have been suggested by a number of
studies to be involved rather in top-down, executive processes
(Adank, 2012). Eckert et al. (2009) demonstrated that the insula
and SMA/ACC are engaged when tasks become increasingly dif-
ficult, independent of modality or task, suggesting that these re-
gions subserve executive processes. Consistently, the anterior
insula and SMA showed an enhanced BOLD signal when listeners
attended to speech (rather than a distracter), and the speech sig-
nal was increasingly degraded (vocoded rather than clear; Wild et
al., 2012b). More specifically, these regions are a resource for
attention and performance monitoring processes (Dosenbach et
al., 2006, 2007; Sadaghiani and D’Esposito, 2012). Thus, we argue
that the anterior insula and SMA/ACC fulfill executive processes,
and that the recruitment of these executive components is pivotal
for a wide range of challenging listening situations.
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Table 1. Overview of MRI activation clusters, thresholded at voxel-wise p(FWE) <0.05, unless indicated differently

Location MNI coordinates Z-Score Extent (mm?)

Degraded > clear speech

L SMA/ACC —6 26 40 7.19 3060

L anterior insula —30 20 =5 7.05 3825

R anterior insula 33 23 -3 5.84 576

L caudate nucleus -9 n 7 518 162

R caudate nucleus 12 17 10 5.45 m
(lear > degraded speech

R superior frontal gyrus 6 59 28 6.55 7866

R precentral gyrus 54 =7 16 6.5 28647

R putamen 27 —-10 -2 7.19

RMTG 63 —-19 -1 6.79

Rangular gyrus 51 —58 22 7.94

L precentral gyrus —54 -1 22 7.59 24183

L putamen/globus pallidus =27 —10 -2 6.87

LHG —54 =10 7 718

L angular gyrus =51 —67 34 1.24

LMTG —60 —13 —20 6.69 1044

L posterior cingulate —6 =37 43 7.47 20700
Positive correlation with AAM rate

RHG 51 -1 1 5.95 270

L amygdala —24 -7 —14 537 135

L SMG —57 =31 19 5.17 279
Negative correlation with AAM rate

L SMA/ACC —6 17 49 6.19 1143

L anterior insula —30 23 -2 4.85 54

LIFG, pars opercularis —48 14 28 5.16 270
Positive correlation with AAM rate N clear > degraded speech

L SMG —57 —28 22 5.22 477

RSMG 60 —25 19 5.08 261

L posterior cingulate cortex 0 —40 46 5.14 486
Negative correlation with AAM rate M degraded > clear speech

L SMA/ACC —6 17 49 7.15 1602

L anterior insula —30 23 -2 5.65 324

R anterior insula 33 23 1 5.25 360

LIFG, pars opercularis —48 14 25 5.17 315
Positive correlation with trial-by-trial fluctuations in comprehension

L frontal medial cortex -3 50 —14 6.62 765

LIFG —51 26 13 5.75 243

LSTS —57 -7 —20 747 18279

L precentral gyrus —54 —=10 34 6.58

LHG —57 —13 4 6.67

L putamen —-30 —16 -2 6.21

L angular gyrus —51 —61 19 7.50

R precentral sulcus 57 —4 3 6.74 11475

RHG 57 -13 4 6.7

R putamen 30 -7 -8 6.34

L thalamus —12 -19 4 5.56 885

R thalamus 12 -19 4 5.57 306

L posterior cingulate -3 =52 16 6.22 2376

R cerebellum 15 —61 =23 6.08 3141

L cerebellum —12 —64 -23 573
Lateralization of comprehension network

L angular gyrus —45 —70 37 5.83 378
Decrease with time X behavior for degraded > clear speech, p << 0.001, k > 20

L superior frontal gyrus —27 47 31 3.79 666

RMFG 33 47 22 4.89 729

R anteroventral thalamus 3 —4 7 5.07 7929

R caudate 18 20 =5 448

L fusiform gyrus —24 —61 —14 4.84 19116
Increase with time X behavior for degraded > clear speech, p << 0.001, k >20

L precentral gyrus —54 —1 19 3.8 189

Posterior cingulate 0 —58 25 4.05 333

L, left; R, right; ACC, anterior cingulate cortex; HG, Heschl’s gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus; STG, superior temporal gyrus;
STS: superior temporal sulcus.
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Figure 5.  Effects of adaptation. To detect changes in activity due to adaptation, we compared the changes over time with
performance increase between degraded and clear speech (top). Stronger downregulation for degraded relative to clear speech
was observed in the anteroventral thalamic nucleus, caudate, frontal, occipital, and cerebellar regions (blue). Conversely, activity
inthe posterior cingulate and left ventral premotor cortex increased over time with adaptation (middle). Toillustrate changes over
time in the thalamus and posterior cingulate, we split up the experiment post hoc into quintiles for which we separately calculated
the contrast estimates for each condition (bottom).

Revisiting the speech comprehension network

cus, often extending into prefrontal and
inferior parietal regions (Scott et al., 2000;
Davis and Johnsrude, 2003; Zekveld et al.,
2006; Obleser et al., 2007; Obleser and
Kotz, 2010). In contrast, the present study
held physical stimulus properties constant
(i.e., 4-band vocoding). Therefore, we
were able to identify regions where activa-
tion varied with actual speech compre-
hension (i.e., behavioral report scores),
independent of acoustic differences.

For a given trial, activity in a perisyl-
vian network was tightly coupled to com-
prehension. Importantly, these areas (Fig.
4) overlapped largely with those activated
by clear compared with degraded speech
(Fig. 3A, blue Z-statistic maps). Together,
this is strong evidence that the observed
network supports sensorimotor opera-
tions involved in successful comprehen-
sion (and, hence, successful repetition)
rather than simply indexing sensitivity to
physical stimulus characteristics.

Such linguistic processes of comprehen-
sion have been proposed to be largely pro-
cessed in the left hemisphere (McGettigan et
al., 2012a; Peelle, 2012). Concordantly, we
found evidence for a left-lateralization of ac-
tivity in the angular gyrus, a structure that is
associated with semantic processing (Ferstl
and von Cramon, 2002; for review see Price,
2012) and has been suggested to facilitate
speech comprehension when signal quality
declines (Obleser et al., 2007; Obleser and
Kotz, 2010).

Cortical contributions to

perceptual adaptation

One important objective here was to iden-
tify and track on-line the neural systems
supporting adaptation to degraded speech.
Depending on adaptation, activity in-
creased over time in cortical areas of the
premotor cortex and posterior cingulate

A number of earlier imaging studies manipulated physical stim-  and decreased in frontal and occipital areas.
ulus features to vary speech intelligibility and found sensitivity to The premotor cortex has been suggested to mediate successful
these manipulations along the superior temporal gyrus and sul-  perceptual learning of degraded speech by mapping the unfamil-
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iar auditory signal onto existing articulatory representations of
speech sounds. Consistent with this idea, adaptation to time-
compressed speech is reflected in a downregulation of activity in
the ventral premotor cortex (Adank and Devlin, 2010). Hervais-
Adelman et al. (2012) observed precentral sulcus activation,
when a vocoded word was paired with its clear representation, a
type of feedback that is known to enhance perceptual learning
(Davis et al., 2005). Similarly, we note in the present study, al-
though with feedback-free learning, that activity in the premotor
cortex increases as a listener adapts to vocoded speech. Thus,
perceptual learning might be rooted in sensorimotor integration
mediated by speech-productive areas.

Enhanced activity in the posterior cingulate cortex has been no-
ticed by Obleser et al. (2007) when semantic context helped compre-
hension of degraded speech at an intermediate signal quality (8-
band vocoded speech). This is commensurate with the current data
where posterior cingulate activity not only correlated with successful
speech comprehension at a given trial (Table 1), but increased as a
listener adapted to degraded speech. Hence, adaptation-related in-
crease of posterior cingulate activity might directly relate to its facil-
itating role in degraded speech comprehension.

Although the present experiment did not involve visual manipula-
tions, we found occipital cortex activity (fusiform gyrus, precuneus) to
correlate negatively with adaptation. While the fusiform gyrus has been
implicated in audiovisual speech perception (Stevenson et al., 2010;
Nath and Beauchamp, 2011; McGettigan et al., 2012b), von Kriegstein et
al. (2003) observed modulation of fusiform gyrus activity during audi-
tory speech perception, even in the absence of visual stimuli. Similarly,
Giraud et al. (2001) have established that visual cortex contributes to
auditory speech processing in CI patients but also in normal-hearing
listeners, especially when listening to meaningful sentences (Giraud and
Truy, 2002). They hypothesized that auditory-to-visual cross-modal in-
teraction contributes to semantic processing. In line with these studies,
we speculate that initial recruitment of the visual cortex might help a
listener extract meaning when first confronted with a novel form of
speech degradation.

A previous study, which used a feedback-based vocoded-
speech learning paradigm simulating CI rehabilitation programs
(Eisner et al., 2010), found the IFG to be involved in successful
adaptation. The authors attributed to the IFG a role in the “spe-
cific use of simultaneous written feedback to enhance compre-
hension,” in line the view of the IFG serving as integration site for
different sources of information necessary for speech compre-
hension (Hagoort, 2005; Rauschecker and Scott, 2009). In the
present study, we did not observe IFG involvement in adaptation.
Likely due to the absence of feedback, listeners might have relied
on substantially different neural mechanisms to adapt to de-
graded speech.

Subcortical contributions to perceptual adaptation

A major novel contribution of the present study was the detection
of subcortical involvement in perceptual adaptation. In previous
imaging studies, such subcortical contributions might have been
obscured due to heartbeat-related artifacts, which we avoided by
use of a cardiac-gated scanning protocol.

We identified the anteroventral nucleus of the thalamus to be func-
tionally involved in adaptation (Fig. 5); note that this structure is proxi-
mal to but not identical to the pulvinar, where structural differences
have been reported as predictive of degraded speech adaptation before
(Erb et al,, 2012). Adaptation-related decrease in activity also encom-
passed the caudate. Although the basal ganglia have primarily been im-
plicated in motor function, there is accumulating evidence that they play
animportant role in language processing (Lieberman etal., 1992; Kotzet
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al., 2002; Fiebach et al., 2003; Kotz, 2006). Presumably, they exert their
function in language processing through their high connectivity to the
cortex (Crosson, 1999): The anteroventral thalamic nucleus and the
caudate form part of the cortico-striato-thalamo-cortical loop, which is
proposed to collect cortical information and funnel and converge it at
cortical output areas, thereby reconfiguring cortical activation patterns
(Kemp and Powell, 1970; O’Connell et al., 2011). In the context of ad-
aptation to degraded speech, naive listeners might at first be forced to
rely more on information-selection processes supported by the cortico-
striato-thalamo-cortical loop. Engagement of this pathway is likely to
sharpen the cortical representation of a stimulus and ultimately lead toa
convergence of the degraded speech signal onto a clear-speech “repre-
sentation,” allowing for enhanced comprehension.

Conclusions

The present work elucidates the central neural mechanisms of
rapid adaptation to acoustic speech degradation with respect to
three points. First, when listening tasks become increasingly dif-
ficult, in the speech as well as the non-speech domain, listeners
rely on a common executive network for “effortful listening”
(Eckertetal., 2009), involving the SMA/ACC and anterior insula.
Second, a perisylvian network subserves speech comprehension
and fluctuates with actual comprehension rather than physical
stimulus features. Finally, the present data advance the under-
standing of how a listener adapts to a degraded speech input,
demonstrating that rapid adaptation is partly explained by hemo-
dynamic downregulation in subcortical structures.
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