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Prior experience with negative spectral correlations promotes
information integration during auditory category learning
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Abstract Complex sounds vary along a number of acoustic
dimensions. These dimensions may exhibit correlations that
are familiar to listeners due to their frequent occurrence in
natural sounds—namely, speech. However, the precise
mechanisms that enable the integration of these dimensions
are not well understood. In this study, we examined the
categorization of novel auditory stimuli that differed in the
correlations of their acoustic dimensions, using decision
bound theory. Decision bound theory assumes that stimuli
are categorized on the basis of either a single dimension
(rule based) or the combination of more than one dimension
(information integration) and provides tools for assessing
successful integration across multiple acoustic dimensions.
In two experiments, we manipulated the stimulus distribu-
tions such that in Experiment 1, optimal categorization
could be accomplished by either a rule-based or an infor-
mation integration strategy, while in Experiment 2, optimal
categorization was possible only by using an information
integration strategy. In both experiments, the pattern of
results demonstrated that unidimensional strategies were
strongly preferred. Listeners focused on the acoustic dimen-
sion most closely related to pitch, suggesting that pitch-
based categorization was given preference over timbre-
based categorization. Importantly, in Experiment 2, listeners
also relied on a two-dimensional information integration
strategy, if there was immediate feedback. Furthermore, this
strategy was used more often for distributions defined by a
negative spectral correlation between stimulus dimensions,
as compared with distributions with a positive correlation.
These results suggest that prior experience with such corre-
lations might shape short-term auditory category learning.
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Introduction

Categorization of auditory sensory information is vital for
making rapid decisions in an acoustic environment. For
instance, the ability to correctly map a complex harmonic
tone to the category car horn is advantageous when one is
crossing a road. Recent decades have brought about a con-
siderable body of research on how categories are formed and
maintained (Ashby & Waldron, 1999; McQueen, 1996;
Nosofsky, 1988; Rosch, 1973, 1978; Russ, Lee, & Cohen,
2007; Sloutsky, 2003; Spiering & Ashby, 2008; Verbeemen,
Vanpaemel, Pattyn, Storms, & Verguts, 2007; Yamauchi,
Love, & Markman, 2002; for reviews, see Ashby &
Maddox, 2005, 2011). This work has become increasingly
focused on auditory categories (Goudbeek, Cutler, & Smits,
2008; Guenther & Bohland, 2002; Guenther, Nieto-
Castanon, Ghosh, & Tourville, 2004; Holt & Lotto, 2006;
Mirman, Holt, & McClelland, 2004).

There is a consensus that auditory categorization involves
the utilization and integration of different acoustic dimensions
(e.g., spectrum [pitch, timbre], duration; Goudbeek, Swingley,
& Smits, 2009; Holt & Lotto, 2006), but it is less clear how
integration of information from integral (nonseparable;
Goudbecek et al., 2009) dimensions might differ from integra-
tion of information from nonintegral (separable) dimensions.
Furthermore, integration across dimensions might be influ-
enced by prior knowledge of specific correlations between
dimensions, particularly from speech. The purpose of this
study was to assess the degree to which integration of infor-
mation from two dimensions is influenced by (1) the integral-
ity of acoustic dimensions (here, location of spectral peaks in
frequency space), (2) the correlation between these dimen-
sions (positive vs. negative correlation of first [S1] and second
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[S2] spectral peak), and (3) the presence or absence of imme-
diate corrective feedback.

To that end, we focused on two modeling approaches that
are particularly apt to these purposes: decision bound theory
and logistic regression. Logistic regression has previously
been applied to auditory categorization and can be used to
predict category membership decisions on the basis of stimu-
lus properties (Hosmer & Lemeshow, 2000). Values along a
stimulus dimension are entered into the regressions as contin-
uous variables, and the 5-weight for this regressor reflects the
predictive power of the stimulus dimension with respect to
categorization responses. Comparisons of -weights for dif-
ferent stimulus dimensions allow assessment of the degree to
which individual stimulus properties are used for categoriza-
tion. For instance, Goudbeek et al. (2009) assessed strategy
use in two conditions where either frequency or duration was
the relevant dimension. Responses were predicted from fre-
quency and duration with logistic regressions that yielded (-
weights for either dimension. A higher §-weight for frequen-
cy, as compared with duration, in the condition where fre-
quency was the relevant dimension showed that participants
indeed used this dimension for their response.

On the other hand, decision bound theory (Ashby & Gott,
1988) assumes that category acquisition involves learning to
divide perceptual space, corresponding to an internal repre-
sentation of stimulus space, into response regions according
to a linear or nonlinear boundary (Ashby & Waldron, 1999).
The position of a novel stimulus in perceptual space is
compared with the location of the boundary, and the
corresponding response is assigned. Thus, from this per-
spective, category learning is a signal detection problem
where the decision bound separating categories corresponds
to the response criterion. Decision bound models for audi-
tory categorization have been extensively studied in the
visual domain and, thus, provide a framework from which
we can generate specific predictions about strategy use in
novel category learning.

Thus far, no study of which we are aware has combined
these two approaches (i.e., logistic regression and decision
bound models). In this regard, the present study complements
and goes beyond previous research. In what follows, we will
describe in detail two strategies for novel category learning
that emerge from decision bound theory and that we assess in
the context of auditory category learning in the present study.

Rule-based and information integration category learning

The distinction between rule-based and information integra-
tion category learning comes from a neuropsychological
model called competition between verbal and implicit sys-
tems (COVIS; Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Ashby & Waldron, 1999). The model assumes that
learning involves two systems that compete or interact
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(Ashby & Crossley, 2010) and differ in their functions and
neural underpinnings. Rule-based learning involves catego-
rization based on an explicit rule that is frequently relatively
easy to verbalize (e.g., if a tone is high in frequency, respond
“category A”; otherwise, respond “category B”).
Generally, rule-based decision bounds are orthogonal to
the dimension on which the decision should be based.
Rule-based learning is assumed to predominantly depend
on an explicit hypothesis-testing system (Maddox, Filoteo,
Lauritzen, Connally, & Hejl, 2005), subserved by the dor-
solateral prefrontal cortex, the anterior cingulate, and the
caudate nucleus (Ashby & Ell, 2001; Rao et al., 1997).

On the other hand, information integration category
learning tasks require a predecisional combination of infor-
mation from more than one dimension. Usually, the optimal
rule in information integration tasks is not easily verbalized
(e.g. if a tone is higher in frequency than it is long in
duration, respond “A”; otherwise, respond “category B”).
Decision bounds are not orthogonal to the dimension on
which the decision should be based but, rather, are repre-
sented as a diagonal—for example, in a two-dimensional
stimulus space. Successful learning of an information inte-
gration task is proposed to rely on an implicit procedural
learning system that depends on feedback processes (Ashby
& Waldron, 1999; Maddox, Filoteo, Hejl, & Ing, 2004;
Maddox et al., 2005). This system is claimed to be sub-
served by the body and tail of the caudate (Nomura et al.,
2007; Seger & Cincotta, 2005). In several studies, it has
been shown that information integration is indeed dependent
on (immediate) feedback in categorization or discrimination
tasks (Ashby, Queller, & Berretty, 1999; Ashby & Waldron,
1999).

In the present study, we applied decision bound modeling
of rule-based and information integration category learning
to an auditory categorization task. Decision bound theory
provided us with an optimal tool with which to evaluate the
success of information integration across two acoustic
dimensions in making category membership decisions.

Auditory category learning

A number of studies have attempted to distinguish between
rule-based and information integration strategies in auditory
categorization performance (e.g., Goudbeek et al., 2008;
Goudbeek et al., 2009; Holt & Lotto, 2006, 2008;
Maddox, Ing, & Lauritzen, 2006; Mirman et al., 2004;
Smits, Sereno, & Jongman, 2006), although relatively few
of them directly applied decision bound models to describe
learning. For instance, in studies by Goudbeek et al. (2009)
and Smits et al., participants learned to categorize inhar-
monic complex tones that varied along the dimensions of
duration and spectral filter location (analogous to the first
formant frequency, F'1, in speech). Goudbeek et al. (2009)
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examined performance for category distributions that were
best separated by a unidimensional duration-based bound-
ary, a unidimensional frequency (i.e., spectral filter location)
boundary, and a diagonal (information integration) bound-
ary that required categorizing stimuli on the basis of a
combination of duration and frequency values. The authors
observed much poorer performance for the information in-
tegration condition, relative to either of the rule-based con-
ditions. On this basis, they hypothesized that rule-based
category learning may be the default strategy in audition
(cf. Maddox et al., 20006).

However, it is also possible that rule-based learning may
have been used more often due to use of duration and fre-
quency dimensions, which have been suggested to be sepa-
rable, rather than integral (Grau & Kemler Nelson, 1988;
Silbert, Townsend, & Lentz, 2009). Prior research on
acoustic-phonetic processing has suggested that dimensions
that vary in the same domain (e.g., frequency) are more likely
to be integral (Kingston, Diehl, Kirk, & Castleman, 2008;
Kingston & Macmillan, 1995; Kingston, Macmillan, Dickey,
Thorburn, & Bartels, 1997). Consistent with this suggestion,
Maddox and colleagues (Maddox, Molis, & Diehl, 2002)
showed that a model of categorization performance assuming
information integration accounted well for performance when
stimuli varied in their second and third resonance frequencies;
however, they did not examine learning per se, since the
categories were already highly learned.

Furthermore, previous research also stressed the impor-
tance of how acoustic dimensions are related to each other.
In this respect, negative correlations between spectral filter
dimensions are relevant with respect to intrinsic pitch of
vowels, reflecting the impression that high vowels (with a
low F1) have slightly higher pitch (higher f0) than do low
vowels (with a higher F1; Lehiste & Peterson, 1961), and
vowel nasalization, showing that the more nasalized a vow-
el, the lower its F1 frequency (Diehl, Kluender, & Walsh,
1990). Given that these correlations hold cross-linguistically
(likely to be based on articulatory constraints; Carre, 2009),
listeners should be familiar with them and, correspondingly,
benefit in novel categorization situations that employ such
correlations.

Our two experiments sought to assess whether (1) infor-
mation is integrated across two integral acoustic dimensions,
(2) information integration depends on the correlation of the
acoustic dimensions, and (3) information integration requires
immediate feedback. For these reasons, both experiments used
stimuli that differed in the location of two spectral peaks
(analogous to the first formant frequencies of vowels, F'1
and F2) and comprised a learning phase with immediate
feedback as well as a maintenance phase without feedback.
In Experiment 1, we examined distributions whose decision
bounds would similarly allow for rule-based or information
integration categorization, thereby assessing the natural

inclination for a particular strategy during the categorization
of auditory stimuli with integral dimensions (Fig. la). In
contrast, Experiment 2 used stimulus distributions that re-
quired information integration for optimal performance
(Fig. 2a).

Our hypotheses are as follows:

1. On the basis of Maddox et al. (2006), we assume that
rule-based categorization is the preferred strategy in
audition. Therefore, in both experiments, we should
see substantial evidence for rule-based behavior.

2. The long-term experience with negative correlations in
speech (and corresponding decision bounds) should
shape the short-term categorization of nonspeech stim-
uli. As a result, more ready use of an information
integration strategy, and consequently, better category-
learning performance should be observed for distribu-
tions with negative correlations between spectral peak
frequencies. Since Experiment 2 was designed such that
information integration would yield optimal perfor-
mance (Fig. 1b), we expect differences between corre-
lations to particularly manifest themselves in this
experiment.

3. Finally, information integration seems to require imme-
diate feedback (Ashby et al., 1999; Ashby & Waldron,
1999). We therefore expect more information integra-
tion in the learning than in the maintenance phase of our
experiments.

Experiment 1

Experiment 1 extended the work of Goudbeek and col-
leagues (Goudbeek et al., 2008; Goudbeek et al., 2009) to
stimuli varying along integral acoustic dimensions. Two
distribution types were examined. In the falling condition,
stimulus distributions were characterized by a negative cor-
relation between spectral filter locations, while the rising
condition distributions were characterized by a positive cor-
relation. In both conditions in Experiment 1, rule-based and
information integration strategy use would have yielded
little performance difference so that we could assess the
natural inclinations of participants.

Accuracy analyses were supplemented by fitting a num-
ber of decision bound models (Ashby, 1992) to individual
participant data in order to assess strategy use during cate-
gory learning. As was outlined above, we also calculated
logistic regressions with the dependent variable category A
vs. B for both learning and maintenance phases (Hilbe,
2009) in order to quantify the contributions of each spectral
dimension to single-trial category membership decisions.
On the basis of previous findings (little information integra-
tion use; Goudbecek et al., 2009; Maddox et al., 2006) and as
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Fig. 1 a Stimulus distributions in the S1-S2 space for Experiment 1.
The dotted lines indicate unidimensional decision bounds for either S1
(vertical) or S2 (horizontal). The diagonal solid line represents a
decision bound for information integration. The “rising” distribution
(left) is characterized by a positive correlation between S1 and S2,
while the “falling” distribution (middle) yields a negative S1-S2 cor-
relation. The right panel shows the equidistantly spaced grid for the

a consequence of the stimulus materials in Experiment 1 (no
strong bias for either strategy), we predicted a bias toward
using rule-based strategies.

We did not expect differences between the rising and
falling distributions. This is because observing a difference
between rising and falling distributions should have depended
on adoption of an information integration strategy, which we
did not predict to observe in Experiment 1. For the same
reason, we predicted that immediate feedback in Experiment
1 would play no or only a negligible role, since it is claimed to
be important for information integration, but not rule-based
learning (Ashby et al., 1999; Ashby & Waldron, 1999).
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Fig. 2 Performance measure per block in the learning phase of Ex-
periment 1. Error bars indicate across-subjects standard errors of the
means. Note the absence of any effect of falling versus rising stimulus
distribution on performance
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maintenance phase. b Stimulus distributions for Experiment 2. Infor-
mation integration decision bounds are represented by the solid diag-
onal lines. Again, the rightmost panel illustrates the stimulus
arrangement for the maintenance phase. Note that stimuli in the main-
tenance phase were matched to the corresponding distributions in the
learning phase, such that there exist small differences between Experi-
ments 1 and 2

Method
Materials

Stimuli were created with PRAAT (Boersma & Weenink,
2011) in two steps. First, a 90-ms white noise was generat-
ed; the duration was chosen on the basis of previous studies
(Goudbeek et al., 2008; Goudbeek et al., 2009). Second, the
white noise was filtered in two frequency bands that ap-
proximated the location of the first and second formant
frequencies of naturally produced vowels—that is, F1 and
F2, respectively. Target filter frequencies are referred to as
spectral filter frequencies, S1 and S2, throughout this article,
and are normalized to Bark (Zwicker, 1961). The Bark
conversion is commonly applied in acoustic-phonetic re-
search and accounts for the nonlinearity of the frequency
resolution by the human auditory system.

The same original white noise token was used as the
basis for all 1,000 stimuli that were generated for each
category (A and B) and for each distribution (falling and
rising), with different S1 and S2 filter frequencies in each
case. Filter frequencies were drawn from the distributions
shown in Fig. 1a. In order to arrive at the stretched distri-
butions along the falling and rising diagonals in the S1/S2
space (with a slope of —1 and +1), the linear equation for the
diagonal running through the distribution center was calcu-
lated. Then individual bivariate normal distributions were
generated that had means, i, at 40 (x,y) locations along the
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diagonal and equal standard deviations, o (see Table 1 for
details). Twenty-five tokens per distribution were randomly
generated, yielding a total of 1,000 stimuli per distribution.

Noises were filtered with fast IIR filters, comprising two
recursive filter coefficients. Filter bandwidths were 0.2
times the target filter frequency. Stimuli were normalized
to an equal average intensity that approximated 60 dB SPL
(Boersma & Weenink, 2011). Onsets were multiplied with
the first half period of a [1 — cos(x)] * 0.5 function, and
offsets with the first half period of a [1 + cos(x)] *0.5
function, over a duration of 10 ms in each case, in order to
eliminate acoustic artifacts.

In order to arrive at a stimulus-based measure for the
likelihood of strategy preference, we determined the nor-
malized distance between the means of category A and
category B distributions, here referred to as ¢, along both
the S1 and S2 dimensions. The information integration §'
(Euclidean distance between distribution means) was of
comparable size to the rule-based ¢’ values (difference be-
tween means for each dimension, S1 and S2). We expect
that larger category distances would lead to better categori-
zation performance, such that if participants were to utilize
optimal strategies, they ought to prefer those for which §' is
largest. In Experiment 1, the similarity of the distances
therefore suggested equal strategy preference.

Stimuli for the nonfeedback maintenance phase were
arranged in an equidistantly spaced grid with step sizes of
2/3 Bark in either dimension (S1, 5-9 Bark; S2, 9—13 Bark).
They thus described a 6 x 6 grid that evenly covered the
critical region of the original stimulus space (Fig. 2a).

Participants and procedure

Thirty-three native speakers of German (all right-handed)
participated in Experiment 1 (16 males; mean age 25.76, SD
2.42). They were drawn from the participant pool of the Max
Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, and received monetary compensation for their partic-
ipation. None of them reported a history of hearing problems.

Table 1 Stimulus details in Experiment 1: Distribution ranges (first
value, starting point; second value, end point), means () and standard
deviations (o) are given for both spectral filter frequencies (S1, S2) in
Bark. Physical ¢’ is calculated on the basis of distribution means and
standard deviations. For rule-based (RB) optimal boundaries, ¢’ can be
calculated for both dimensions, while for information integration (II)

Participants were randomly assigned to either the rising
(n = 17; 7 males; mean age 25.29, SD 2.08) or the falling
(n = 16; 9 males, mean age 26.25, SD 2.72) distribution
condition. Participants first completed eight blocks (36 trials
each) during the learning phase. On each trial, a single
stimulus was randomly selected from category A (1,000
exemplars) or B (1,000 exemplars), with the following
restrictions: (1) No stimulus could be selected more than
once for a given participant in the learning phase of the
experiment; (2) within each block, category A and B stimuli
were equally probable (p = .5). After stimulus presentation,
participants indicated whether it belonged to category A or
category B by pressing one of two keys on a computer
keyboard (button assignments for the two categories were
counterbalanced across participants).

Following the response, participants received corrective
feedback, which was displayed for 1 s in the middle of a
CRT screen (Sony Multiscan E430). Correct feedback was
given in bold green font (24 points), while incorrect feed-
back was given in bold red font (24 points). Participants
were allowed a short break following each block.

Participants then completed two maintenance blocks (al-
s0 36 trials each). On each trial, participants were presented
with a stimulus sampled from the equidistantly spaced grid
described above. Critically, during the maintenance phase,
participants did not receive feedback about their responses.
The entire experiment lasted for about 20 min.

Stimuli were presented on a Windows-based PC, using the
stimulation software PRESENTATION (Neurobehavioral
Systems, Inc., version 13.9), and were transmitted through a
Creative Labs Audigy II sound card onto Sennheiser HD 201
headphones.

Results
Accuracy results

Overall, performance differed significantly from chance
(d' =135, 8D =0.43), 1(32) = 32.94, p < .001. Accuracy in

optimal boundaries, ¢’ can be calculated only for the integrated dimen-
sion and is based on the Euclidean distance between the distribution
means in the two-dimensional space. A and B are arbitrary labels and
refer to stimulus sets in the S1/S2 space, where the leftmost set (with
low S1) is A and the rightmost (with high S2) is B

Distribution Band Range A Range B 1B oA OB RB ¥’ 1 ¢’

Rising S1 35-74 6.5-10.4 5.47 8.48 0.94 0.92 3.24 441
S2 7.5-11.4 10.5-14.4 9.47 12.47 0.93 0.94 3.23

Falling S1 10.5-6.4 7.5-3.4 5.47 8.46 0.93 0.94 3.22 4.41
S2 11.5-74 14.5-10.4 12.55 9.52 0.92 0.92 3.26
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the learning phase was assessed by d’, a signal detection
measure of perceptual sensitivity that is independent of re-
sponse bias (Macmillan & Creelman, 2005). Figure 2 shows d'
as a function of block separately for the rising and falling
distributions. In order to assess learning, d’ values were en-
tered into a mixed—measures analysis of variance (ANOVA)
with block as a within-subjects and distribution (rising vs.
falling) as a between-subjects variable. For all ANOVAs, we
report partial eta squared (npz) as a measure of effect size and
Greenhouse—Geisser-corrected p-values and degrees of free-
dom in cases of sphericity violations. There were no signifi-
cant main effects [block, F(6.1, 188.9) = 1.14, 17]23 =.04,p=
.34; distribution, F(1, 31) =0.002, 7712) = .00001, p=.97] and
also no block x distribution interaction, F(6.1, 188.9) = 0.43,
nf) = .04, p = .89. Hence, performance did not differ across

blocks, and performance across blocks did not differ as a
function of distribution condition.

Logistic regression

In order to assess the degree to which category member-
ship judgments (i.e., 4 vs. B) depended on the acoustic
dimensions under investigation (i.e., S1, S2), logistic
regressions were calculated in order to predict category
A responses from S1 and S2 and their interaction. Note
that a significant S-weight indicates the importance of the
dimension in determining category membership. Logistic
regression models were calculated separately for the learning
and the maintenance phases.

Learning phase The model comprised the regressors S1 and
S2 and the factors block and distribution (rising, falling). The
following interactions were also included in the model:
S1 x S2, S1 x block, S2 x block, S1 x distribution, and
S2 x distribution. S1 values per trial significantly predicted
category judgments, 0 = —1.27, z = —4.82, p < .001, but
there was no interaction with block, z = —0.02, p = .24,
indicating that participants similarly weighted S1 informa-
tion in making category judgments over the course of the
learning phase. The S1 x distribution interaction reached
significance, 3= —0.35, z = —2.21, p < .05, indicating that
category A responses were better predicted by S1 in the
falling than in the rising distribution. None of the other
factors or interactions were significant, z < 2, n.s.

Maintenance phase The model included the same predic-
tor variables listed above for the learning phase model,
with the exception of block, which was not included
here. There was no significant S1 effect, even though
there was a trend for more category A responses at lower
S1 values, 3 = —1.82, z = —1.38, p < .16; the S1 effect
reached significance if the S1 x S2 interaction was
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removed from the model, 8 = —-2.34, z = —13.08,
p < .001. In the full model, there was a further signif-
icant effect of distribution, 3 = 3.97, z = 2.06, p < .05,
reflecting that category A responses were better predicted
in the falling than in the rising condition, and this effect
was qualified by the significant S1 x distribution inter-
action, = —0.53, z = —-1.92, p = .05.

Learning versus maintenance phases Cue utilization during
the learning versus maintenance phases was compared di-
rectly by entering the absolute values of (G-weights for S1
and S2 into a mixed—measures ANOVA with the within-
subjects factors phase (learning, maintenance) and filter (S1,
S$2) and the between-subjects factor distribution (rising,
falling). Individual (-weights stemmed from the learning
and maintenance models reported above, except that we
did not include block in the learning phase model (parallel
to the maintenance phase model). Note that for these anal-
yses, only the magnitude (but not the sign) of the 3-weights
provided interesting information regarding the importance
of each dimension to category judgments. There were sig-
nificant main effects of filter, F(1, 93) =217.99, 77}2) =.701,
p < .001, and phase, F(1, 93) = 43.52, 7712) =.319,p < .0l
Higher (s were observed for S1 (2.55, SD = 1.20) than for
S2 (0.62, SD =0.53), and (s were higher in the maintenance
(2.02, SD = 1.57) than in the learning (1.15, SD = 0.90)
phase. Furthermore, there was a trend for a distribution x
filter interaction, F(1, 93) = 2.03, 771% =.021, p = .14,
reflecting that within the falling distribution, the difference
between Gs for S1 and S2 (2.70, SD = 1.18, vs. 0.55,
SD = 0.55) was greater than within the rising distribution
(2.43, SD = 1.24, vs. 0.67, SD = 0.52). There was also a
filter x phase interaction, F(1, 93) = 16.50, 77[2, =.151,
p < .01, indicating that gs for S1 and S2 differed more in
the maintenance (3.25, SD = 1.20, vs. 0.78, SD = 0.61) than
in the learning (1.86, SD = 0.70, vs. 0.45, SD = 0.39) phase.

In order to visualize the degree to which participants
relied on the individual dimensions, S1 and S2, we plotted
(s for S2 (ordinate) against (3s for S1 (abscissa) in the
learning and in the maintenance phases. In these scatter-
plots, participants are coded according to whether they
significantly used S1 and S2 (S1 + S2; blue diamonds), S1
only (S1; red squares), S2 only (S2; green triangles), or none
of the dimensions (purple circles) for categorization.
Significant usage was determined by (s that significantly
differed from zero on the basis of the single-subject logistic
regression models (o = .05). In these plots, participants
who used both dimensions tended to fall on a diagonal.
Participants with a preference for S2 are clustered near
the ordinate, and participants with a preference for Sl
are clustered near the abscissa (Fig. 3a). It can be seen
from the figure that most participants relied on S1 in
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both the learning and the maintenance phases. The per-
centages of significant (s did not significantly differ between
the falling and rising distributions (all x%s < 2.5, n.s.), even
though we observed a trend for participants to be more likely
to rely on both S1 and S2 in the falling, as compared with the
rising, stimulus distribution.

In sum, the logistic regressions indicated that most par-
ticipants relied on the first filter frequency, S1, during cat-
egorization and more strongly in the maintenance phase
(without feedback) than in the learning phase (with feed-
back). On the other hand, some participants used informa-
tion from both S1 and S2, while only very few exclusively
used S2 for categorization.

Furthermore, categorization also somewhat differed
between the falling and the rising distributions in that
the reliance on S1 was greater in the falling than in the
rising stimulus distribution and in that more participants
tended to use both S1 and S2 in the falling than in the
rising distribution.

Modeling results

Three families of decision bound models (e.g., Ashby &
Gott, 1988; Maddox & Ashby, 1993) were fit to the data for
each individual participant on a block-by-block basis to
determine the decision strategy that best accounted for per-
formance (Fig. 3b; see the Appendix for details): unidimen-
sional rule-based, information integration, and random-
response models. The two rule-based models assumed that
listeners made use of unidimensional rules based on either
S1 or S2. Two information integration models assumed an
optimal decision bound or allowed decision bound slope
and intercept to be free parameters but are summarized as
one model for the remainder of this article. Finally, the
random-response model presumes that participants guessed
randomly on every trial. In order to assess whether the
decision bound models provided substantial evidence, we
transformed the respective Bayesian information criterion
(BIC) scores to Bayes factors (Kass & Raftery, 1995;

A B weights Single-subject Bs significant for Percentage of Bs with p<0.05
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Fig. 3 Illustration of strategy use in Experiment 1. a. Left: Scatterplots
of 3 weights (per subject) for S1 and S2 in the learning phase (left) and
in the maintenance phase (right). Participants are coded as follows:
blue diamonds, both S13s and S2 fs significantly differ from zero; red
squares, only S1/s significantly differ from zero; green triangles, only
S2 ps significantly differ from zero; purple circles, none of the (s
significantly differ from zero. The diagonals illustrate the location of
(s that would correspond equally to an S1- and S2-based response.
Right: Percentage of significant Js in the learning and maintenance

Block

phases, for the falling and rising distributions. Percentages are based on
whether s were significant for S1, S2, or both S1 and S2. b Left:
Proportions of participants whose responses were best accounted for by
the individual decision bound models. Block numbers marked with an
asterisk indicate a significant difference in the proportion of partici-
pants using an S1 versus an S2 rule. Right: Percentage of rule-based
(S1 and S2) and information integration models whose Bayes factors
exceeded 3
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Raftery, 1986; see the Appendix) and subsequently used
Jeffrey’s suggested scale of evidence. According to this
scale, Bayes factors greater than 3 indicate substantial evi-
dence for model use.

Almost all model fits (per participant and block) for the
rule-based S1 and S2 models provided substantial evidence,
while only 10 % of the model fits for information integration
exceeded this threshold (Fig. 3b, right). The percentages did
not differ between distributions (i.e., falling vs. rising;
all x*s > 2, n.s.). Figure 3b (left) gives the proportion of
listeners in the rising and falling distributions whose data
were best fit by each of the tested models across blocks. All
winning models had Bayes factors of >3.

Consistent with the results of the logistic regression
analysis, participants in both the rising and falling dis-
tribution conditions made almost exclusive use of uni-
dimensional rules, and participants were more likely to
use a rule based on S1 than one based on S2. Chi-
squared tests indicated that, overall, more participants
relied on a unidimensional S1 rule, as compared with a
unidimensional S2 rule, in six of the eight blocks. In
order to account for multiple comparisons, we corrected
our statistics with the false-discovery-rate (FDR) method
(Benjamini & Hochberg, 1995; FDR-corrected a-level =
.05). Taking the distribution conditions separately, par-
ticipants in the falling distribution condition exhibited
this pattern more strongly, using a unidimensional Sl
rule more often than a unidimensional S2 rule on four
of the eight blocks (ps < .05), whereas this difference
was not significant in any block for the rising distribu-
tion condition.

Convergence of logistic regression and decision bound
models

To our knowledge, no study has assessed the degree to
which the two approaches, logistic regressions and deci-
sion bound models, converge. For this reason, we ex-
plored the relationship between block-averaged (-weights
and goodness-of-fit measures (i.e., BICs) separately for
the unidimensional S1 and S2 decision bounds in two
ANOVAs with block-averaged BIC scores as dependent
variables. We were effectively asking to what degree
BIC-scores supporting a rule-based S1 or S2 strategy
could be predicted from [-weights of S1 or S2 logistic
regressions. Note that information integration models
were not included in these analyses, since the proportion
of participants using information integration in
Experiment 1 was too small for meaningful comparisons.

Both models included the between-subjects factor distri-
bution (rising, falling), the regressor S-weight, as well as the
B-weight % distribution interaction. The S1 model (with S1
BIC score as dependent variable) showed a significant effect
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of S1 (-weight, F(1, 29) = 28.16, 77]23 =.492, p < .001,
reflecting a negative correlation between [S-weights and BIC
scores (i.e., higher S-weights for lower BIC scores). However,
the correlation was not modulated by distribution, as
evidenced by no other significant main effects or interactions
(all Fs< 3, all ps>.15). In the S2 model (with S2 BIC scores
as dependent variable), >the negative correlation between
[O-weights was not significant, F(1, 29) = 2.33, 17]23 =.074,
p < .15, overall, but depended on distribution [3-weight x
distribution: F(1, 29) = 3.07, nﬁ =.113, p = .05]. The
[-weight/BIC score correlation was significant for the falling,
F(l,15)=4.88, 7712) = .245, p < .05, but not for the rising, F(1,
14)=0.39, nﬁ = .027, p = .54, distribution.

Overall, BIC scores supporting either S1 or S2 rule-based
strategies negatively correlated with the corresponding ab-
solute (-weights from the S1 and S2 logistic regression
effects. Thus, §-weights and decision bound model BIC
scores converged.

Prediction of performance by decision bound models

Finally, we tried to predict performance from strategy use;
that is, we tested whether the likelihood of using a rule-
based S1 or S§2 categorization strategy was associated with
better performance, as indexed by two separate mixed-
measures ANOVAs with d' as the dependent variable, the
proportions of rulel-based S1 and S2 strategy use and dis-
tribution (falling, rising) as independent variables. Since
proportions of rule-based S1 and S2 strategy use are neces-
sarily highly correlated, the two factors were investigated in
separate ANOVAs.

None of the ANOVAs showed significant main effects or
interactions (all /s > 1, n.s.). Thus, performance in Experiment
1 did not depend on either rule-based S1 or S2 strategy use.

Discussion

Participants in Experiment 1 showed a strong preference for
using a unidimensional rule-based decision bound for audito-
ry categorization and primarily relied on the first filter fre-
quency (S1). Thus, our prediction was borne out: Participants
preferred a rule-based approach and did not exhibit differ-
ences in performance, as indexed by d’, as a function of block
for either the rising or the falling distribution condition.
Performance was overall high beginning from block 1, indi-
cating that listeners in both conditions discovered a strategy
yielding good categorization performance immediately.
However, additional learning was not apparent over blocks.
This is likely because our category distributions overlapped,
causing some stimuli to be ambiguous and performance to
plateau below ceiling levels.
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Our observation that participants generally tended to
adopt a unidimensional strategy when categorizing auditory
stimuli is in line with the study of Goudbeek et al. (2009).
However, here the stimulus dimensions were based on the
same acoustic dimension (i.e., frequency), suggesting that
rule-based categorization strategies are preferred even if
dimensions are integral.

Without an S1-S2 correlation and without feedback
(i.e., in the maintenance phase), the magnitude of (-
values for S1 was larger than in the learning phase; this
S1 preference was more pronounced in the falling than
in the rising distribution. Hence, in the maintenance
phase, participants seemed to rely on S1 to a greater
extent for the falling than for the rising distribution. The
assumed special role of the falling distribution condition
was further analyzed in Experiment 2, where optimal
performance depended on the usage of an information
integration strategy and where the decision bound was a
falling (with a negative slope) or rising (with a positive
slope) diagonal.

Crucially, Experiment 2 was motivated by the obser-
vation that negatively correlated acoustic dimensions
seemed to be preferred in speech (and more general,
in audition), for which reason we assume that if dimen-
sions are required to be integrated, this is done more
readily for those that show a negative, as compared
with a positive, correlation.

Experiment 2

Experiment 2 made use of stimulus distributions that
required a predecisional integration of information from
two spectral dimensions—that is, for which rule-based
categorization was a suboptimal strategy. We were in-
terested in whether a substantial proportion would use
an information integration strategy, and the degree to
which this choice depended on the nature of the corre-
lation between spectral filter locations, S1 and S2 (i.e.,
falling vs. rising). Due to the assumed familiarity with
negative acoustic correlations, we expected that infor-
mation integration would be more readily used in the
falling, as compared with the rising, stimulus distribu-
tion. We also assumed that if rule-based categorization
is indeed predominant in audition (Goudbeek et al.,
2009; Maddox et al., 2006), some participants in
Experiment 2 would continue using this strategy.
Finally, the use of information integration strategies in
Experiment 2 should also depend on the availability of
immediate feedback (Maddox, Ashby, & Bohil, 2003),
for which reason we did not expect indications of in-
formation integration in the maintenance phase
(designed as in Experiment 1).

Method
Materials

The stimuli were similar to those in Experiment 1, with the
exception that (1) category A and B distributions were
parallel in the S1-S2 space, rather than lying on the same
diagonal as in Experiment 1, and (2) the spread was in-
creased in both dimensions, S1 and S2, in order to render
categorization more difficult. S1/S2 ranges and standard
deviations are illustrated in Table 2. In contrast to
Experiment 1, the normalized distance, ¢’, was considerably
higher for the information integration bound than for either
of the rule-based bounds; thus, best performance would be
attainable by an information integration strategy. Parallel to
Experiment 1, stimuli for the maintenance phase consisted
of'a 6 x 6 grid that covered the critical region of the stimulus
space;

Participants and procedure

Thirty-six native speakers of German (all right-handed)
participated in Experiment 2 (19 males; mean age 25.14,
SD 4.02); participants were drawn from the same pool as in
Experiment 1, although none of the participants had been
recruited for Experiment 1. As before, participants were
assigned to either the rising (11 males; mean age 24.67,
SD 3.09) or falling stimulus (8 males; mean age 25.61, SD
4.82) distribution.

Participants received monetary compensation for their
participation. No participant reported hearing problems.
The procedure was identical to that in Experiment 1.

Results
Accuracy results

Accuracy as measured by d' differed significantly from
chance (d' = 1.33, SD = 0.56), #35) = 19.78, p < .001.
As in Experiment 1, learning was assessed in a mixed-
measures ANOVA on d’ with block and distribution as
independent variables. The main effect of block was
significant, F(5.5, 188) = 2.09, 17]2): 060, p < .05,
indicating that performance increased over time. There
was also a significant main effect of distribution, F(1,
34) = 35.03, 7712) =.507, p < .001, with participants in
the falling distribution condition (d’' = 1.61) outperform-
ing participants in the rising distribution condition
(d" = 1.04). Learning rate, however, did not depend on
distribution, as indicated by a nonsignificant block x distribu-
tion interaction, F(5.5, 188) = 0.50, 77% =.014, p = .84. The
accuracy results are illustrated in Fig. 4.
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Table 2 Stimulus details in Experiment 2. Distribution ranges, means
() and standard deviations (o) are given for both spectral bands (S1,
S2). ¢' is calculated on the basis of distribution means and standard
deviations. For rule-based (RB) optimal boundaries, §' can be

calculated for both dimensions, while for information integration (II)
optimal boundaries, ¢’ can be calculated only for the integrated dimen-
sion and is based on the Euclidean distance between the distribution
means in the two-dimensional space

Distribution Band Range A Range B JON B oA o RB ¢’ I’

Rising S1 1.5-54 4.5-84 3.49 6.48 1.04 1.03 2.86 4.05
S2 11.5-15.4 8.5-12.4 13.49 10.49 1.06 1.05 2.88

Falling S1 1.5-54 4.5-84 347 6.49 1.05 1.05 2.88 4.06
S2 12.5-8.4 15.5-11.4 10.52 13.52 1.06 1.03 2.87

Logistic regression

Logistic regression analyses were conducted as in Experiment
1, which predicted the likelihood of a category A response
from S1 and S2 separately for the learning and maintenance
phases.

Learning phase The model comprised the regressors S1 and
S2, the factors block and distribution (rising, falling), and
the interactions S1 X S2, S1 x block, S2 X block,
S1 x distribution, and S2 x distribution. Notably, there
was a main effect of S1, 3= —1.38, z= —5.60, p < .001;
that is, S1 values per trial significantly predicted category
judgments. The significant block main effect, 5 = 0.33,
z = =3.23, p < .01, and the S1 X block interaction,
0= —0.04, z = —4.32, p < .001, together indicated that
category A responses could be increasingly better predicted
over the course of the experiment, especially on the basis of
S1. Furthermore, category A responses were generally
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Fig. 4 Performance measure per block in the learning phase of Ex-
periment 2. Whiskers indicate across-participants standard errors of the
means
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predicted better in the falling than in the rising distribution,
£=9.41,z=20.41, p < .001. The distribution factor further-
more interacted with both S1,5=—0.50,z= —9.00, p < .01, and
S2, 3= —0.59,z=—18.23, p < .001, reflecting larger S1 and S2
effects for the falling than for the rising distribution. Finally,
there was a significant interaction of S1 and S2, 5 = 0.60,
z=2/75p< .0l

Maintenance phase In the model without a block factor, both
SI, 3= -229,z= -737, p < .001, and S2, 3 = —0.54,
z = —3.69, p < .01, were significant and interacted with
distribution (S1 x distribution, § = —0.96, z = —8.88,
p < .001; S2 x distribution, 3 = —0.44, z = —6.32, p < .001.
S1 and S2 were significant predictors for category A
responses, and more so for the falling than for the rising
distribution. In general, category A responses were predicted
better in the falling than in the rising distribution, 3 = 10.07,
z=9.26, p < .001. Finally, as in the learning phase, the S1 x
S2 interaction was significant, 5= 0.72,z = 4.79, p < .001.

Learning versus maintenance phase The absolute values of
the single-subject G-weights (from the same models as those
reported in Experiment 1) were used as the dependent var-
iable in an ANOVA with the factors phase (learning, main-
tenance), distribution (rising, falling), and filter (S1, S2).
The ANOVA revealed main effects of filter, F(1, 102) =
184.21, nf) = .644, p < .001, phase, F(1, 102) = 28.66,
775 =.219, p < .001, and distribution, F(1, 34) = 29.23,
775 = .462, p < .001. Weights were higher for S1 than for
S2 (1.77, SD = 1.06, vs. 0.47, SD = 0.37), and higher in
the maintenance phase than in the learning phase (1.38,
SD = 1.26, vs. 0.86, SD = 0.64). p-weights were larger
in the falling distribution than in the rising distribution
(1.44, SD = 1.21 vs. 0.80, SD = 0.67. Furthermore, the
filter x distribution, F(1, 102) = 13.85, 7]5:.119,
p < .001, phase x distribution, F(1, 102) = 7.90,
nf) =.072, p < .01, and filter x phase, F(1, 102) = 13.86,
775 =.120, p < .001, interactions reached significance, reflect-

ing larger 3 differences between S1 and S2 in the falling (2.27,
S=1.19, vs. 0.61, SD = 0.38) than in the rising (1.28, SD =
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0.60, vs. 0.33, SD = 0.30) distribution and in the maintenance
(2.21, SD = 1.26, vs. 0.55, SD = 0.43) than in the learning
(1.34, SD = 0.55, vs. 0.39, SD = 0.28) phase. Importantly, §
differences between the maintenance and learning phases
were larger for the falling (1.85, SD = 1.50, vs. 1.04,
SD = 0.65) than for the rising (0.93, SD = 0.73, vs. 0.68,
SD = 0.59) distribution. The three-way filter % distribution x
phase interaction was significant as well, F(1, 102) = 10.02,
77; =.090, p < .01, motivating separate analyses for the
learning and the maintenance phases.

These analyses showed a significant filter x distribution
interaction in the maintenance phase, F(1, 34) = 15.07,
77; =.307, p < .01, but not in the learning phase,
F(1,34)=0.31, 7712) =.009, p = .58. In order to visualize the
degree to which participants relied on the individual dimen-
sions, S1 and S2, we plotted (s for S1 (abscissa) against (s for
S2 (ordinate) in the learning and in the maintenance phases,
separately for the rising and the falling distributions (Fig. 5a).
The plots illustrate that 3s were larger in the maintenance than
in the learning phase and also larger in the falling than in the
rising distribution.

Notably, more participants used both dimensions, S1 and
S2, in the falling than in the rising distribution, as reflected
by significant differences in proportions of significant /s
from the single-subject logistic regressions, x> = 8.86, p
(FDR) < .05 (Fig. 5a, right). This distinction was more
pronounced in the learning than in the maintenance phase,
where the proportions did not differ, x> <2, n.s.. In the same
vein, participants used S2 more often in the falling than in
the rising distribution of the learning phase, x> =726, p
(FDR) < .05, while again, proportions did not differ in the
maintenance phase, x> < 2, n.s.

Modeling results

As in Experiment 1, three families of decision bound
models (e.g., Ashby & Gott, 1988; Maddox & Ashby,
1993) were fit to the learning-phase data—that is, uni-
dimensional rule-based (S1, S2), information integration,
and random-response models (Fig. 5b, left). Again, we
calculated Bayes factors for each model fit. In contrast
to Experiment 1, the proportion of models that received
substantial evidence differed significantly between the
falling and the rising distributions (Fig. 5b, right) all
x’s > 3, p(FDR) < .05. All winning models had Bayes
factors of >3.

The proportions of participants fit best by each model are
shown in Fig. 5b (left). Overall, participants most often
adopted a unidimensional rule-based strategy based on S1,
as in Experiment 1. However, strategy use crucially differed
between the rising and falling distribution conditions. For
the rising distribution, the unidimensional S1 rule was used

in the majority of cases (six of eight blocks; ps < .05, FDR-
corrected). In the falling condition, participants used an
information integration strategy as often as the rule-based
(S1) strategy in all eight blocks. Thus, participants trained
on the falling distributions were more likely to adopt the
optimal strategy that involved integrating S1 and S2 infor-
mation before making a category membership decision.

Convergence of logistic regression and decision bound
models

As before, the convergence of J-weights and BIC scores
was assessed in two ANOVAs. The first ANOVA comprised
the dependent measure rule-based SI1 BIC score and the
independent variables S7-(3-weight and distribution.
Importantly, there was a main effect of [-weight,
F(1,32)=130.53, 7712) = .803, p < .001, reflecting a negative
correlation between S1-3s and RB S1 BIC scores, and a
main effect of distribution, F(1, 32) = 20.82, 7712) = .394,
p < .001, showing lower BIC scores (better fits) for the
falling than for the rising distribution.

The (-weight x distribution interaction, F(1, 32) = 6.73,
nf) = .803, p < .05, indicated a stronger 3-BIC score corre-
lation in the falling than in the rising condition.

The second ANOVA comprised the dependent measure
RB S2 BIC score and the independent variables S2-3 and
distribution and showed an effect of [F-weight,
F(1, 32) = 133.67, nﬁ = .806, p < .001, as well as an effect
of distribution, F(1, 32) = 11.23, 772 =.260, p < .01, but no
[-weight x distribution interaction, F(1, 32) = 1.14,
n* = .034, p = .29. Again, as in Experiment 1, 3-weights
and BIC scores converged.

Prediction of performance by decision bound models

In order to directly assess the performance benefit of using
an information integration strategy, we carried out a corre-
lation analysis between the proportions of rule-based S1 and
information integration strategy use and d’. Notably, there
was a positive correlation of proportion of information inte-
gration use and d', r = 48, t= 3.20, p < .01, suggesting that
using an information integration strategy was indeed bene-
ficial for performance. By contrast, the correlation of pro-
portion of rule-based S1 use and d' was negative, » = —0.23,
t = —1.39, n.s.; that is, participants using a rule-based S1
strategy tended to perform worse.

Discussion

The important result of Experiment 2 is that, as compared to
Experiment 1, more participants used an information
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Fig. 5 Tllustration of strategy use in Experiment 2. a Scatterplots of 3
weights (per participant) for S1 and S2, for the rising and falling
distributions in the learning phase (left) and in the maintenance phase
(right). Participants are coded as follows: blue diamonds, both S1 s
and S2 fs significantly differ from zero; red squares, only S1 [s
significantly differ from zero; green triangles, only S2 (s significantly
differ from zero; purple circles, none of the (s significantly differ from
zero. The diagonals illustrate the location of (s that would correspond
equally to an S1- and S2-based response. The percentage of significant

integration strategy, and more so in the falling than in the
rising distribution condition. Generally, participants who
were more likely to use information integration performed
better than those who were more likely to focus on an S1
rule-based strategy.

Intriguingly, despite being disadvantageous, participants
still used the S1 dimension to a high degree, as evidenced by
both logistic regressions and decision bound models. That
is, although Experiment 2 examined classification perfor-
mance for auditory stimuli that were optimally separated by
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Bs (p < .05) for the dimensions S1 and S2 and the combination of S1
and S2 are illustrated below the scatterplots. Significant proportion
differences are indicated with an asterisk. b Left: Proportions of deci-
sion bound models used to categorize stimuli from the rising (left) and
falling (right) distributions. Block numbers marked with an asterisk
indicate a significant difference in the proportion of participants using
an S1 versus an information integration rule. Right: Percentage of rule-
based (S1 and S2) and information integration models whose Bayes
factors exceeded 3

an information integration (diagonal) decision bound, par-
ticipants still frequently used a rule-based strategy based on
S1 (cf. Goudbeek et al., 2009).

Crucially, the use of the optimal information integration
strategy depended on whether stimulus distributions were
rising or falling (see Fig. 1b). The falling condition was
associated more strongly with use of an information inte-
gration decision strategy, and the resulting performance was
shown to be better for individuals adopting an information
integration strategy. This result was predicted, since we
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hypothesized that familiarity with negative acoustic (here,
spectral) correlations between dimensions would promote
their integration.

Finally, a comparison of 3-weights for the learning and
maintenance phases suggested that the correlation of the
stimulus dimensions in the learning phase, as well as imme-
diate feedback, promoted the use of both S1 and S2 dimen-
sions for categorization. This is consistent with previous
findings in vision research (cf. Maddox et al., 2003). Our
analyses suggested that information integration is character-
ized by an equal usage of S1 and S2 and that it was present
in the learning phase, but not in the maintenance phase.
There, without an S1-S2 correlation and without feedback,
we observed a significant shift to an almost exclusive rule-
based use of S1.

General discussion

Two experiments examined auditory category formation for
stimuli varying along two spectral dimensions (i.e., S1 and
S2), which exhibited either positive or negative correlations.
Decision bound modeling and logistic regressions yielded
three main results: (1) better information integration for
negative spectral correlations, (2) tendency toward rule-
based S1 categorization overall, and (3) dependency of
immediate corrective feedback for information integration.

Promotion of information integration by negative
correlations

The most important result of the two experiments is that the
use of information integration (confined to Experiment 2)
depended on the nature of the correlation between dimen-
sions: Negative correlations promoted information integra-
tion, while positive correlations inhibited it. Overall,
information integration in Experiment 2 predicted better
performance.

Regarding the special status of negative acoustic correla-
tions, our study extends the phonetic work by Kingston and
colleagues (Kingston et al., 2008; Kingston & Macmillan,
1995). Kingston and colleagues characterized the interaction
of fundamental frequency (f0, pitch) and first resonance
frequency (F1) in the human oral cavity, as well as the
interaction of F1 and nasalization (i.e., the resonance fre-
quencies in the human nasal cavity) in speech vowel and
nonspeech vowel-like sounds, and observed that both the
fO0—F1 and Fl-nasalization relations approximate a negative
correlation. With respect to nasalization, vowels with a
higher degree of nasalization tend to have lower F'1 frequen-
cies (Diehl et al., 1990). Kingston and colleagues demon-
strated that both of the discussed negative correlations (f0—
F1 and Fl-nasalization), in comparison with their positive

counterparts, led to better categorization performance for
speech and nonspeech stimuli (Kingston et al., 2008;
Kingston & Macmillan, 1995). On the basis of these find-
ings, we suggest that there is a general inclination toward
encountering negative acoustic correlations in speech
(resulting from articulatory bases as discussed in Carre,
2009), possibly shaping the learning of nonspeech stimuli
with similar negative correlations.

Preference of rule-based strategies

In both experiments, participants predominantly based their
categorization on the first spectral filter, S1. This inclination,
which is in line with previous research (Goudbeek et al.,
2009; Maddox et al., 2006), seems remarkable in the light of
Experiment 2, where rule-based categorization was clearly
suboptimal and where participants using this strategy per-
formed worse than those employing information integration.
In general, this inclination may have a neural explanation:
Previous neuroimaging studies on visual categorization
have shown that cortico—striatal connections are vital for
information integration (Ashby & Ell, 2001; Ashby &
Ennis, 2006; Ashby & Spiering, 2004; Helie, Roeder, &
Ashby, 2010; Nomura et al., 2007; Seger, 2008). Moreover,
cortico—striatal connections between the auditory cortex and
the caudate have been argued to be more diffuse than
cortico—striatal connections between the visual cortex and
the caudate (Maddox et al., 2006). Thus, information inte-
gration may be relatively less likely in auditory categoriza-
tion than in vision, due to anatomical constraints.

A second possible explanation for the reliance on rule-
based strategies is developmental in nature. We have argued
that information integration depends on acoustic correla-
tions familiar from speech; thus, speech itself should pre-
sumably be acquired predominantly by information
integration. A potential bias toward information integration
learning in early life is related to the observation that brain
structures such as the prefrontal and medial cortices that
support rule-based learning (Gabrieli, Brewer, Desmond,
& Glover, 1997; Schacter & Wagner, 1999) develop rela-
tively late (Diamond, 2002). As a result, rule-based learning
in early life does not compete with information integration
learning as strongly as in adolescence or adulthood (Huang-
Pollock, Maddox, & Karalunas, 2011).

The preference for using specifically the S1 dimension
during categorization may reflect that pitch changes (pre-
sumably, the perceptual dimension conveyed by S1 varia-
tion; Remez & Rubin, 1993) are easier to verbalize than
timbre changes (as potentially reflected by S2; cf. Smits et
al., 2006). That is, pitch changes can be easily verbally
described as being “high” or “low,” while timbral differ-
ences are more difficult to label verbally. The easier-to-
verbalize dimension (i.e., S1) was then not surprisingly
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more often used for rule-based categorization, which, by
definition, is based on easy-to-verbalize rules (Ashby &
Maddox, 2005; Ashby & Maddox, 2011).

The influence of immediate feedback

The third main finding from the present experiments con-
cerns the comparison of the learning phase with the main-
tenance phase. First, the learning phase contained
distributional information from which the correlations be-
tween dimensions could be extracted, while in the mainte-
nance phase, no such information was available. Second,
there was immediate feedback in the learning phase, but not
in the maintenance phase. Previous research indicates that
both of these aspects may contribute to the likelihood that
information integration strategies are used for categoriza-
tion. Research from vision provides evidence that immedi-
ate feedback is crucial for adopting an information
integration strategy (cf. Ashby et al., 1999; Ashby &
Waldron, 1999). Additionally, 5-weights in the maintenance
phase of both experiments were larger, and more so for S1
than for S2. The falling condition in Experiment 2 further-
more showed that even though both dimensions were used
during learning, concomitant with information integration,
participants reverted to using S1 in the maintenance phase.

Potential limitations of decision bound models

Decision bound models are not unequivocally accepted;
they implicitly assume dissociations of multiple memory
systems subserving rule-based and information integration
learning. In particular, they assume that rule-based learning
requires working memory, while information integration
does not (Filoteo, Lauritzen, & Maddox, 2010).
Challenging this claim, (Lewandowsky, Yang, Newell, &
Kalish, 2012; Newell & Dunn, 2008; Newell, Dunn, &
Kalish, 2010), showed that rule-based as well as information
integration learning tax working memory.

Furthermore, decision bound models are not the only
means by which auditory categorization can be modeled.
On the one hand, prototype models (Rosch, 1973) assume
that a novel stimulus is assigned to the category whose
average or most representative member (i.e., the prototype)
it is most similar to. Different formulations of prototype
theory suggest that categorization decisions are also based
in part on the spread of category members around the
prototype (i.e., category variance; Nearey & Assmann,
1986). Exemplar models (Nosofsky, 1986), on the other
hand, assume (in their most extreme formulation) that cate-
gorization involves comparing novel acoustic items with all
previously encountered members of relevant existing cate-
gories and then making a category membership decision on
the basis of the maximum of the summed similarities to the
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members of the relevant categories. Prototype and exemplar
models have been extensively compared elsewhere
(Nosofsky & Stanton, 2005; Tunney & Fernie, 2012) and
have also found to be somewhat inferior to decision bound
models (Smits et al., 2006).

The present data show that decision bound models provide
a valuable tool for assessing the contribution of different
acoustic dimensions to auditory categorization. Furthermore,
since Experiment 2, in particular, provides converging results
from logistic regressions and decision bound models regard-
ing the use of specific stimulus dimensions for categorization,
we are confident that decision bound models accurately ac-
count for participants’ response behavior.

Conclusions

In sum, the present experiments provided evidence that
listeners tend to use a rule-based—that is, an explicit—
hypothesis-testing approach when they are categorizing
novel auditory stimuli. Our results further suggest that
long-term experience with sound distributions characterized
by a negative spectro—spectral (S1-S2) correlation shapes
the categorization of novel auditory stimuli. This is in line
with experiments on speech sound categorization where
long-term experience with correlations among auditory
dimensions could not be easily overridden by short-term
exposure to contrasting dimension correlations (Idemaru &
Holt, 2011). Even though this long-term experience promot-
ed information integration strategies and better performance
in auditory categorization, our experiments challenge the
view that the most successful strategy is necessarily the
one participants use most frequently.

Appendix: Methods

To model the learning process, we fit a number of decision
bound models (DBMs) to each listener’s data on a block-by-
block basis. DBMs assume that a single stimulus presenta-
tion is represented in a multidimensional perceptual space
and that each stimulus can be mapped to perceptual (i.e.,
internal) space by a transformation corresponding to a psy-
chophysical function:

P(yi) = Xpi + epi, (1)

where e,,; is a random vector representing perceptual noise.
Here, we assume a one-to-one mapping of physical to per-
ceptual coordinates but allow for trial-by-trial (unbiased)
variability in the percept.

According to decision bound theory, participants make
categorization decisions on the basis of division of the
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psychophysical space by a response criterion. We thus fit a
number of DBMs to the data of each listener for each block in
order to estimate the response criterion that best accounted for
the listener’s pattern of responses. For each experiment, we fit
two unidimensional models, two information integration
models, and one random-response model.

Unidimensional rules assume that a listener makes a
categorization decision on the basis of one dimension only
by setting a response criterion, A, at a location along the
relevant dimension. Given this criterion location, the prob-
ability of responding “category A”, P(Rp), is

P(RA|X) = P[ x| + ey <A1 + €], (2)

and the probability of responding “category B,” P(Rp), is
P(Rg[x) = 1 = P(Ralx), (3)

where A, is the response criterion location, e is criterial
error, and ey, is perceptual noise on the relevant dimension.
In the model, e.; and e, are assumed to be independent and
identically distributed. Equation 2 can be rewritten as

ll — X1
(7 +%)

where @ is the normal cumulative distribution function. In
the model, o, and o, cannot be separately determined, so we
fit only one noise parameter, o> = Uzp + 0%. Thus, each
unidimensional model has two free parameters: the variabil-
ity parameter, o, and the response criterion location, 1; We
fit unidimensional models based on both S1 and S2.
Information integration models assume that the listener
integrates the S1 and S2 values before making a decision about
category membership. The response criterion location, A;,, can
then be described in two-dimensional space by assuming a
slope, b, and intercept, cy. The probability of making a “cate-
gory A” response for a two-dimensional stimulus is then

P(Ry|x) = @ (4)

Al — x1X2
[ 2 2
o, t 0,

Two versions of the information integration model were
fit to each listener’s data. The first assumed that the response
criterion location was oriented optimally; this model thus
had only one free parameter, 0. The second information
integration model thus allowed the slope and intercept of
the response criterion location to vary, and so had three free
parameters: b, ¢y, and o.

The random-response rule modeled the probability of
responding “category A,” P(R4), as the frequency of actual
“category A” responses for each listener in each block,

P(Rylx) = @ (5)

ignoring the value of the stimulus on either dimension.
This model had one free parameter that was estimated from
the data, the observed frequency of “category A” responses.

In order to determine which DBM best fit each partic-
ipant’s data on a block-by-block basis, all DBMs were fit to
responses using maximum likelihood methods. Best-fitting
parameters were found with MATLAB’s constrained non-
linear optimization routine based on a quasi-Newton ap-
proximation of the Hessian function. We used the BIC
(Kass & Raftery, 1995) for model comparisons. The BIC
is calculated for each model according to

BIC = —2ML; + j;log(n), ©)

where ML; is the maximum log-likelihood of model i, j is
the number of parameters in the model, and » is the number
of observations. The number of parameters in the expression
serves as a handicap for model complexity; the model with
the smallest BIC is selected as the best-fitting model.

Bayes factors were derived from BIC scores on the basis
of approximation formulae provided in Raftery (1986) and
rewritten as

—1(My M)

B] =e 2 s (7)

where M1 is the BIC score to be converted into the Bayes
factor and MO is the BIC score of the alternative model—
here, the random-response model.
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