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Our sensory environment is teeming with complex rhythmic struc-
ture, to which neural oscillations can become synchronized. Neural
synchronization to environmental rhythms (entrainment) is hypoth-
esized to shape human perception, as rhythmic structure acts to
temporally organize cortical excitability. In the current human elec-
troencephalography study, we investigated how behavior is influ-
enced by neural oscillatory dynamics when the rhythmic fluctuations
in the sensory environment take on a naturalistic degree of complex-
ity. Listeners detected near-threshold gaps in auditory stimuli that
were simultaneouslymodulated in frequency (frequencymodulation,
3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation
rates and typeswere chosen tomimic the complex rhythmic structure
of natural speech. Neural oscillations were entrained by both the
frequency modulation and amplitude modulation in the stimulation.
Critically, listeners’ target-detectionaccuracydependedon the specific
phase–phase relationship between entrained neural oscillations in
both the 3.1-Hz and 5.075-Hz frequency bands, with the best perfor-
mance occurring when the respective troughs in both neural oscilla-
tions coincided. Neural-phase effects were specific to the frequency
bands entrainedby the rhythmic stimulation.Moreover, thedegreeof
behavioral comodulation by neural phase in both frequency bands
exceeded the degree of behavioral modulation by either frequency
band alone. Our results elucidate how fluctuating excitability, within
and across multiple entrained frequency bands, shapes the effective
neural processing of environmental stimuli. More generally, the fre-
quency-specific nature of behavioral comodulation effects suggests
that environmental rhythms act to reduce the complexity of high-
dimensional neural states.
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Low-frequency neural oscillations have recently been proposed
to play a crucial role in perception (1–4). This is because low-

frequency neural oscillations reflect fluctuations in local neuro-
nal excitability, meaning they influence the likelihood of neuronal
firing in a periodic fashion (4–6). The result is that the probability
that a (near-threshold) stimulus will elicit a neuronal response is
not a uniform function of time but, instead, depends on the phase
of the neural oscillation into which the stimulation falls. Indeed,
the dependence of behavioral performance on neural oscillatory
phase has been demonstrated in the visual (7–11) and auditory
(12–15) domains.
The role of neural oscillatory phase in perception is suggested

to be of particular importance when stimuli possess temporal
regularity (1, 11, 16, 17). Precise alignment of neural oscillations
with rhythmic stimuli is accomplished via entrainment, which is
a process by which two oscillations become synchronized, or phase-
locked, through phase and/or period adjustments (18). Through
entrainment, perception of rhythmic stimuli is optimized when
high-energy portions of a signal are aligned with periods of high
excitability, whereas low-energy portions of the signal are aligned
with periods of low excitability. Because maintenance of a high-
excitability state is metabolically more expensive than fluctuating
between states of high and low excitability (6), “rhythmic-mode
processing” constitutes a particularly efficient means of allocating
neuronal resources to rhythmic stimuli (17). From an empirical per-
spective, rhythmic structure potentially acts to reduce the complexity
of the neural state space such that the most informative (entrained)

neural assemblies come to dominate the neural dynamics (19).
Thus, the use of rhythmic stimulation allows for a hypothesis-
driven investigation of neural phase effects on performance,
specifically in the entrained frequency bands.
Critically, natural environmental stimuli are rarely perfectly iso-

chronous and possess a complex rhythmic structure that results from
variation along a number of dimensions simultaneously. However,
the interactive effects of entrained neural phase in more than one
frequency band on perception have not been demonstrated in any
modality or species. Thus, in the current human electroenceph-
alography (EEG) study, we examined perceptual effects of the
phase–phase relations of neural oscillations entrained by slow
acoustic pacemakers presented simultaneously at two different
frequencies. We modeled our auditory stimuli after the rhythmic
structure present in natural speech. In particular, we chose an
amplitude modulation (AM) rate in the range of the speech syl-
lable envelope (5.075 Hz, refs. 20–22) and a slower frequency
modulation (FM) rate in the range of prosodic fluctuations (3.1
Hz, ref. 23; Fig. 1). Bothmodulations were applied simultaneously
to narrow-band noise stimuli in which to-be-detected near-
threshold targets were embedded. By taking into account neural
phase in multiple frequency bands simultaneously, we aimed to
take a first step toward characterizing the complex interactions
among frequency bands that are likely to underlie processing of
natural environmental stimuli.

Results
Behavioral Modulation by FM and AM Stimulus Phase. Participants
(n = 17) detected near-threshold gaps embedded in rhythmically
complex 14-s AM–FM sounds. Gaps fell randomly with respect
to the FM phase (Fig. 1) and coincided with either the rising or
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falling phase of the AM to equalize stimulus energy at the two
target locations. Individual participants’ behavioral performance
(Fig. 2, Upper Left, and Fig. S1) showed strong and significant
modulation by FM stimulus phase, as indexed by significant
circular–linear correlations between FM stimulus phase and hit
rate [rising AM stimulus phase: t(16) = 5.69, P < 0.001, effect
size r = 0.82; falling AM stimulus phase: t(16) = 9.56, P < 0.001,
r = 0.92; Fig. 2, Upper Right], that did not differ between rising
and falling AM stimulus phases [t(16) = 1.90, P = 0.08, r = 0.43].
Moreover, estimated periodicity in behavioral performance
patterns reflected the FM rate (3.1 Hz) and its harmonic (6.2 Hz;
Fig. 2, Bottom). We ensured that the behavioral modulation was
not driven by detectability differences attributable to stimulus
acoustics (12, see SI Data, and Fig. S1).

Neural Oscillations Were Entrained by Simultaneous FM and AM.
During performance of the gap-detection task, neural respon-
ses were recorded using EEG. Neural data were first examined
independent of behavioral performance to test whether neural
oscillations were entrained by the AM and FM in the stimulation.
Fig. 3 shows amplitude spectra as a function of frequency re-
sulting from fast Fourier transforms (FFTs) performed in two
different ways to highlight entrained responses to either the AM
or FM (SI Materials and Methods).
We observed significant amplitude peaks corresponding to the

AM stimulation frequency (5.075 Hz: z = 3.61, P < 0.001, r =
0.62, “total” amplitude) and its second harmonic (z = 3.61, P <
0.001, r = 62, “AM-evoked” amplitude), as well as to the FM
stimulation frequency (3.1 Hz: z = 3.47, P < 0.001, r = 0.60,
“FM-evoked” amplitude) and its second harmonic (z = 3.18, P =
0.001, r = 0.55, “FM-evoked” amplitude). Topographies for all
entrained responses (Fig. 3) were consistent with auditory cor-
tical generators (24, 25).

Entrained Neural Phase in Multiple Frequency Bands Comodulates
Behavior. Entrained neural oscillatory phase for frequency
bands centered on 3.1 and 5.075 Hz was extracted from single-
trial neural responses just before the onset of the to-be-detected
gap. Hit rates were then calculated as a function of joint 3.1-Hz
and 5.075-Hz neural phase (Fig. 4; note that for analysis of
neural phase, both 3.1-Hz and 5.075-Hz phase were treated as
circular variables).
Critically, gap-detection performance depended jointly on

neural phase in the two frequency bands. Best hit rate across

participants was consistently observed when the troughs of both
entrained oscillations coincided (3.1 Hz: 2.72 ± 0.60 rad, mean ±
variance; 5.075 Hz: −3.13 ± 0.75 rad, Fig. 4B), whereas the
overall worst hit rate fell near the peak of both neural oscil-
lations (3.1 Hz: −0.42 ± 0.60 rad; 5.075 Hz: 0.01 ± 0.75 rad).
Moreover, 3.1-Hz-driven mean performance and performance

range were both strongly modulated by 5.075-Hz neural phase
[performance range: F(17,272) = 2.89, P = 0.002, r = 0.37; mean
performance: F(17,272) = 2.85, P = 0.002, r = 0.37; Fig. 4],
confirming the interactive contributions of neural phase in the
two frequency bands (see following). Optimal 3.1-Hz neural
phase was not modulated by 5.075-Hz neural phase [F(17,288) =
0.19, P = 0.998, r = 0.13] because peak performance was always
observed at the trough of the 3.1-Hz neural oscillation in-
dependent of the phase of the 5.075-Hz neural oscillation. The
nonmodulation of optimal 3.1-Hz neural phase is consistent with
best performance being associated with coincidence of the troughs
in both entrained frequency bands.
We also analyzed potential effects of pre-gap phase on gap-

evoked responses (ERPs). Notably, the magnitude of the auditory
N1 component of the ERP was stronger for hits than misses and
also exhibited a joint best pre-gap neural phase. The full analysis is
included in the SI Data and Fig. S2.

Behavioral Comodulation Is Interactive and Frequency-Specific. In a
final analysis, we tested whether neural phase effects on gap-
detection performance were both interactive and specific to the
entrained frequency bands. To test for interactivity, we estimated
the degree to which hit rates were modulated by neural phase in
the 3.1-Hz frequency band alone, in the 5.075-Hz frequency band
alone, and in the two frequency bands taken together (behavioral
modulation index; Fig. 5A). Although behavioral modulation
strength did not differ between the 3.1-Hz and 5.075-Hz fre-
quency bands when considered independently [t(16) = 0.84, P = 0.41,
r = 0.21], behavioral modulation was significantly stronger when

Fig. 1. Complex rhythmic stimulation and target placement. Schematic time-
frequency representation of a complex rhythmic stimulus generated by si-
multaneously applying AM (5.075 Hz) and FM (3.1 Hz) to a narrow-band noise
carrier. Near-threshold gaps fell randomly with respect to 3.1-Hz FM phase
and fell equally often into the rising (magenta) or falling (cyan) phase of the
5.075-Hz AM.

Fig. 2. Behavioral data for the gap-detection task. Single-participant hit rates
as a function of FM stimulus phase for four exemplary listeners (Upper Left),
shown separately for the rising (magenta) and falling (cyan) AM stimulus
phases. All listeners showed quasi-periodic modulation of behavior by FM
stimulus phase, as indicated by significant circular–linear correlations, for both
AM stimulus phases (Upper Right; error bars indicate SEM). Asterisks denote
significance at P ≤ 0.005. The periodicity present in the behavioral modulation
was specific to the FM rate (3.1 Hz) and its harmonic (6.2 Hz; Lower).
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taking both frequency bands together than for either frequency
alone [versus 3.1 Hz: t(16) = 3.85, P = 0.001, r = 0.69; versus
5.075 Hz: t(16) = 5.88, P < 0.001, r = 0.83].
To confirm interactivity was specific to the entrained neural

frequency bands, we calculated an interaction strength metric for
every pairwise combination of frequencies between 1 and 10 Hz
(in 0.25-Hz steps). Critically, a peak in interaction strength was
observed for the specific combination of 3.1 and 5.075 Hz (Fig.
5B). We confirmed the statistical significance of this effect by
comparing interaction strength against all other pairwise combi-
nations of frequencies using a permutation test [t(16) = 8.30, P <
0.001, r = 0.90]. It can be noted that interaction strength was also
relatively high in two frequency–frequency bins falling near the

diagonal. Interestingly, these relatively high interaction strengths
also corresponded to entrained frequency bands; that is, to the in-
teraction of the FM stimulation (3.1 Hz) and second harmonic
(6.2 Hz) with themselves.

Behavioral Comodulation Does Not Depend on the Specific Frequencies
of AM and FM. Our choice of AM and FM frequencies was in-
formed by knowledge of the characteristics of natural speech; that
is, we chose a theta-band AM frequency in the range of the syllable
envelope (20–22) and a delta-band FM frequency in the range of
prosodic contour fluctuations (23). Thus, it might be argued that
the observed comodulation of psychophysical performance was
specific to our choice of a slow FM and a faster AM. To demon-
strate the generalizability of our main result, we conducted another
behavioral study that involved detecting gaps in rhythmically
complex stimuli that exhibited an inverted AM–FM relation, in
whichmodulation at a relatively slowAMrate (3.1Hz) co-occurred
with a relatively fast FM rate (5.075 Hz). Critically, we observed
similar behavioral comodulation for these stimuli (SI Data and Fig.
S3). Thus, the present results do not depend on our choice tomimic
modulation rates in natural speech but, instead, generalize to more
arbitrary and arguably less natural combinations of acoustic
modulation.

Discussion
The current study demonstrates that the instantaneous phase of
entrained neural oscillations in multiple frequency bands como-
dulates human listening behavior. Specifically, gap-detection hit
rates were determined jointly by the specific phase–phase rela-
tionship of neural oscillations entrained by simultaneous 3.1-Hz
FM and 5.075-Hz AM. Notably, behavioral comodulation was
specific to frequencies that were entrained by the complex stim-
ulus rhythm. Moreover, comodulation of performance was in-
teractive, in that behavior was more strongly modulated by the
combination of phases in both entrained frequency bands than
by phase in either entrained frequency band alone.

Fig. 3. Neural oscillations were entrained by simultaneous FM and AM.
Normalized grand-average total amplitude (black), FM-evoked amplitude
(red), and AM-evoked amplitude (blue) plotted as a function of frequency.
All amplitude peaks for which topographies are shown were statistically
significant (P ≤ 0.001). The FFT data are plotted for electrode Cz.

Fig. 4. Entrained neural phase in multiple frequency bands comodulates behavior. (A) Toroidal representation of hit-rate modulation. 3.1-Hz neural phase is
plotted on the larger, outer circle, and 5.075-Hz neural phase is plotted on the smaller, inner circle. (B) Schematic illustration of joint phase effects on be-
havioral performance. The red arrow indicates the combination of 3.1-Hz phase (dark gray) and 5.075-Hz phase (light gray) that yielded peak performance.
(C) Analysis of single-participant hit-rate data for estimation of dependent measures. Single-trial hit rates as a function of 3.1-Hz neural phase were fit with
cosine functions separately for each 5.075-Hz phase bin. (D) Dependent measures from cosine fits described in C. The 3.1-Hz driven mean performance (Left),
performance range (Center), and optimal 3-Hz neural phase (Right), plotted as a function of 5.075-Hz neural phase. Plots of mean performance and per-
formance range show mean ± SEM; plot of optimal 3.1-Hz neural phase shows mean ± circular SD.
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Neural Entrainment by Complex Rhythmic Stimuli Comodulates
Behavioral Performance. In recent years, increasing scientific at-
tention has been devoted to the hypothesis that entrainment
of low-frequency neural oscillations by the temporal structure of
time-varying stimuli supports perception through alignment of
an oscillation’s excitable phase with predictable, and thus im-
portant, portions of the signal (1, 2, 16, 26). A limitation of these
studies, however, is related to their exclusive focus on entrained
neural phase in a single frequency band (7–10, 12, 14, 27). That
is, although neural-phase effects on behavioral performance
have been demonstrated for a wide range of frequencies covering
the classic delta (2, 4, 12, 28), theta (7, 8), and alpha (7, 10, 14)
bands, any single study has focused on only one frequency at
a time. To be specific, although several studies have entrained
neural oscillations at two or more different frequencies simul-
taneously (28, 29) or entertained the possibility of phase effects
in multiple frequency bands (7), no study of which we are aware
has examined phase–phase effects on behavioral performance.
In this regard, an important point to be made about the po-

tential role of neural oscillations in perception is that natural
environmental rhythms are complex. Hence, natural rhythms
have the potential to act as pacemakers for neural oscillations in
a number of frequency bands simultaneously (30). Consider, for
example, speech processing, which is suggested to be supported
by entrainment of theta-band neural oscillations by amplitude fluc-
tuations corresponding to the syllable envelope (26, 31). Notably,
however, speech is a rhythmically complex stimulus possessing not
only theta-band amplitude fluctuations but also slower delta-band
frequency fluctuations corresponding to prosodic contour (32, 33).
Critically, the current data give credence to the potential of neural
oscillations to be entrained by simultaneous environmental pace-
makers (30) and support the role of neural phase in shaping per-
ception in rhythmically complex situations.
With respect to the underlying neural source or sources of the

observed effects, neural oscillations entrained by rates similar to
those used in the current study have been localized to auditory
cortex using magnetoencephalography (MEG) (34) and human
electrocorticogram recordings (35), even for rhythmically com-
plex speech stimuli (36). In general, the responsiveness of the
auditory pathway to varying modulation rates is hierarchical in
nature, with “higher” levels of the auditory pathway responding
best to slower modulation rates (37). Thus, neural entrainment to
stimuli with rates in the delta–theta bands would be unlikely at
levels lower than primary auditory cortex, in which entrainment to
delta-frequency tone sequences has been observed for macaque
monkeys (2, 28). Although the current EEG data do not support

a spatially precise localization of entrained neural oscillations,
the topographies were consistent with auditory cortex generators
(24, 25). We tentatively suggest that the interactive effect of phase
in two frequency bands on gap-detection performance originates
in primary/secondary auditory cortex. Slow neocortical oscillations
originating in primary/secondary auditory cortices would become
entrained by the complex modulation pattern of the stimulation
(which would have been preserved by the auditory periphery),
resulting in temporally complex fluctuations in excitability.

Phase Information Supports Stimulus Coding in Auditory Cortex. In
the current study, we probed for neural signatures of entrainment,
using two different methods to calculate the amplitude spectrum
of neural responses. Taking the results from both methods to-
gether, we observed significant peaks corresponding to both the
FM (3.1 Hz) and AM (5.075 Hz) stimulation frequencies and their
harmonics, confirming that neural oscillations were entrained si-
multaneously by both the AM and FM in our complex rhythmic
stimulation. Notably, however, we did not observe a 5.075-Hz peak
in the analysis of AM-aligned brain signals. The reason for this is
that human auditory cortex relies on a phase-coding mechanism to
efficiently code complex rhythmic signals containing simultaneous
AM and FM (38–40); critically, the instantaneous phase of the
entrained neural oscillation with respect to the AM codes for the
instantaneous frequency of the FM.
More generally, neural phase information has been shown to

be critically important for stimulus coding in auditory cortex (34, 41–
44). In particular, a number of studies have shown that stimulus
identity can be decoded on the basis of single-trial neural phase
patterns, but not single-trial power envelopes. Because neural phase
patterns evolve on a much faster timescale than neural power-
envelope patterns, the capacity for information coding ismuch higher
in the phase than in the power domain (42, 45, 46), making neural
phase a highly effective medium for tracking and coding temporally
complex auditory stimuli. The current data support the importance of
time-varying neural phase patterns to code for complex stimuli early
in auditory cortical processing.

Do Spectral Peaks at the Stimulation Frequencies Reflect Entrainment
of Ongoing Neural Oscillations? We have interpreted the presence
of spectral peaks corresponding to the FM and AM stimulation
frequencies (accompanied by oscillation of behavioral perfor-
mance in these same frequency bands) as reflecting entrainment
of ongoing (spontaneous) neural oscillations by rhythmic envi-
ronmental stimulation (4, 18, 47). Evidence that environmental
rhythmic structure interacts with ongoing brain rhythms comes
from the satisfaction of a number of predictions derived from dy-
namic systems theory (18, 48). First, both empirical and modeling
results demonstrate that the strength of the observed neural os-
cillation depends on the correspondence between the external
stimulus rhythm and the ongoing neural rhythm. That is, stimulus-
related neural oscillations are strongest and most quickly apparent
when the environmental rhythm matches the natural frequency of
the endogenous neural oscillator (47–50) and when the stimulation
perturbs the ongoing neural oscillation in a specific phase (48, 49).
Second, neural oscillations exhibit a self-sustaining quality (51) that
can be observed in both neural recordings (28, 50) and behavioral
fluctuations (52, 53). Additional support for the hypothesis that
environmental rhythms entrain ongoing oscillations comes from
the observation that the laminar distributions of entrained and
ongoing neural oscillations are identical, suggesting a shared neural
generator (4).
An alternative view assumes that the observed spectral peaks

might instead reflect the summation of a series of invariant
transient neural responses evoked by rhythmic stimulation in-
dependent of ongoing background activity (54). Evidence for this
view comes from success in predicting the form of steady-state
responses to isochronous auditory or visual stimuli from evoked
responses to independent stimulus events embedded in tempo-
rally jittered sequences (54–56) and from failures to observe self-
sustainment of neural oscillations after stimulus cessation (54).

Fig. 5. Behavioral comodulation was interactive and frequency-specific. (A)
The behavioral modulation index was significantly larger for the combina-
tion of the 3.1-Hz and 5.075-Hz frequency bands than for either frequency
band alone. Error bars indicate SEM. (B) Interaction strength (shown here
normalized with respect to SD across participants) showed a peak at the
combination of 3.1-Hz and 5.075-Hz frequency bands that was specific to
the frequencies entrained by the stimulation.
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Moreover, a lack of evidence for ongoing oscillations at many
frequencies at which a spectral peak can be observed is regarded as
a further source of evidence for the “evoked” quality of the oscil-
latory activity (18). With respect to this latter point, it is important
to note that an oscillatory system can display two characteristic
behaviors in the absence of stimulation: the system will either os-
cillate spontaneously at its natural frequency or, in the case of a
damped system, no ongoing oscillations will be visible (57). A
damped oscillator can, however, be entrained by rhythmic stimu-
lation. Thus, the absence of spontaneous neural oscillations is in-
sufficient to conclude that neural oscillations do not reflect an
interaction between the neural oscillatory system and the temporal
structure in the environment.
Although the current data are insufficient to decide de-

finitively in favor of one view or the other, we suggest mounting
evidence supports the hypothesis that environmental rhythmic
structure interacts with ongoing neural oscillations through en-
trainment. We expect that future work combining electrophysiol-
ogy and computational modeling will further differentiate these
alternatives and reveal the consequences for human perception
and cognition.

Rhythm Reduces the Complexity of High-Dimensional Neural Dynamics.
Neural dynamics are necessarily complex and high dimensional,
so that the neural system can flexibly restructure relations be-
tween oscillatory frequencies and brain regions to support dif-
ferent functions (19). One implication of this complexity is that it
may be difficult to uncover the interactive effects that neural
oscillations both within and across frequency bands exert on be-
havior. The approach taken here was to use rhythmic stimulation
to reduce the dimensionality of neural dynamics and to constrain
the state space within which information could be coded and pro-
cessed.Whenwe examined the degree to which behavior depended
on neural phase in all pairwise combinations of frequency bands,
we showed behavioral comodulation by neural phase that was spe-
cific to the frequencies that were present in our rhythmic stimulation
and that, moreover, entrained neural oscillations.
We suggest that using rhythm as a means to organize neural

oscillations is likely to reduce the complexity of neural phase effects
on behavior. However, in the absence of rhythmic stimulation, that
is, during continuous-mode processing (16, 17, 58), neural phase
effects are likely to be muchmore complex than can be revealed by
a singular focus on individual frequency bands.We suggest that the
perspective adopted here (i.e., allowing for the possibility that
complex interactions among frequency bands support perception
and cognition) will in turn allow for a better understanding of these
dynamics in potentially more complicated nonrhythmic situations.

Conclusions
The current study demonstrated a comodulation of human gap-
detection performance by the phase–phase relationship of neural
oscillations in two frequency bands entrained simultaneously by
3.1-Hz and 5.075-Hz acoustic modulations. In particular, best
target-detection accuracy occurred when the respective troughs in
both neural oscillations coincided. Critically, the interactive co-
modulation of behavior we observed was specific to the entrained
frequencies, suggesting environmental rhythms reduce dimensionality
of neural dynamics and clarify the relation of neural dynamics to
psychophysical performance. In sum, the current results elucidate
how fluctuating excitability in multiple entrained frequency bands
shapes the effective neural processing of environmental stimuli.

Materials and Methods
Participants. Seventeen native German speakers (8 female) with self-reported
normal hearing took part in the study. All were right handed, and mean age
was 25.2 y (SD = 2.7 y). Data for one additional participant were collected
but were discarded because of a high number of rejected trials. All partic-
ipants gave written informed consent and received financial compensation.
The procedure was approved of by the ethics committee of the medical
faculty of the University of Leipzig and in accordance with the Declaration
of Helsinki.

Stimuli. Auditory stimuli were generated by MATLAB software (Mathworks,
Inc.) at a sampling rate of 44,100 Hz. Stimuli were 14-s complex tones fre-
quency modulated at a rate of 3.1 Hz and a depth of 37.5% (carrier-to-peak
frequency distance normalizedwith respect to carrier frequency) and amplitude-
modulated at a rate of 5.075 Hz and a depth of 100% (Fig. 1). The center fre-
quency of the complex carrier signals was randomized from trial to trial (range,
800–1200 Hz). All stimuli were composed of 30 frequency components sampled
from a uniform distribution with a 500-Hz range. The amplitude of each com-
ponent decreased linearly with increasing distance to the center frequency. The
onset phase of the stimulus was randomized from trial to trial, taking on one of
eight equally spaced values between −π and π. All stimuli were peak-amplitude
normalized and were presented at a comfortable level (∼60 dB SPL).

Two, three, or four near-threshold gaps were inserted into each 14-s
stimulus (gap onset and offset were gated with half-cosine ramps) without
changing the duration of the stimulus. Because gap detection is not equally
easy in all phases of the AM (59), each gap was chosen to be centered either
halfway up the rising phase or halfway down the falling phase of the AM, so
that stimulus intensity was identical for the two gap locations, but phase
was opposite. The result was that gaps fell randomly (approximately uni-
formly) into the phase of the FM. FM phase was sorted post hoc for analysis
of behavioral data. Gaps never occurred in the first or final 1 s of the 14-s
stimulus, and they were constrained to fall no closer to each other than 1.5 s.

Procedure. Gap duration was first titrated for each individual listener such that
detection performance was centered on 50%; the median individual threshold
gap duration was 26 ms (± interquartile range = 9 ms). For the main experi-
ment, EEG was recorded while listeners detected gaps embedded in 14-s long
AM–FM stimuli by pressing a button when they detected a gap. Overall, each
listener heard a total of 200 stimuli, and thus was presented with a total of 600
gaps. The experiment lasted about 3 h, including preparation of the EEG.

Data Acquisition and Analysis. Behavioral data. Behavioral data were recorded
online by Presentation software (Neurobehavioral Systems, Inc.). “Hits” were
defined as button-press responses that occurred no more than 1.5 s after the
occurrence of a gap. Each gap occurrence was associated with a specific AM
stimulus phase (rising; falling), simultaneously with a FM stimulus phase (ap-
proximately uniformly distributed). Hit rates were calculated separately for the
rising phase and falling phase of the AM, and for each of 18 nonoverlapping
phase bins of the frequency modulation, equally spaced between −π and π.
Details regarding testing the relationship between behavioral performance
and stimulus phase are provided in SI Materials and Methods.
Electroencephalography data. The EEG was recorded from 26 Ag–AgCl scalp
electrodesmountedona custom-made cap (Electro-Cap International), according
to the modified 10–20 system, and additionally from the left and right mastoids.
Signals were recorded continuously with a passband of DC to 135 Hz and digi-
tized at a sampling rate of 500 Hz (TMS international, Enschede, The Nether-
lands). Online reference was placed at the nose and the ground electrode was
placed at the sternum. Electrode resistance was kept under 5 kΩ. All EEG data
were analyzed offline, using custom Matlab scripts and Fieldtrip software (60).

Data were preprocessed twice: one pipeline was geared toward frequency-
domain analysis of full-stimulus epochs, and the second was geared toward
analysis of prestimulus phase in short epochs centered on targets (gaps, SI
Materials and Methods and Fig. S4). To test for neural entrainment to the
frequency and amplitude modulations in our stimulation, we examined am-
plitude spectra resulting from FFTs (SI Materials and Methods). To test
changes in target (gap) detection performance resulting from the prestimulus
phase in the entrained frequency bands, after conversion to the time-fre-
quency domain using a wavelet convolution, trials were sorted into an 18 × 18
grid of overlapping bins (bin width = 0.6π) according to pre-gap neural phase
in the frequency bands of interest (i.e., 3.1 Hz × 5.075 Hz). Then, we tested the
joint effects of neural phase in both frequency bands on gap-detection hit
rates using the procedure explained in the SI Materials and Methods.
Statistical testing. For all parametric statistical tests, we first confirmed that the
data conformed to normality assumptions using a Shapiro-Wilk test. When
the normality assumption was violated, we used appropriate nonparametric
tests. Effect sizes are reported as requivalent (61) (throughout, r), which is equiv-
alent to a Pearson product-moment correlation for two continuous variables, to
a point-biserial correlation for one continuous and one dichotomous variable,
and to the square root of η2 (eta-squared) for ANOVAs. The only exception is for
circular Rayleigh tests, where we report resultant vector length, r, as the cor-
responding effect size measure.
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SI Data
Further Analysis of Behavioral Performance. To test whether the
nature of the observed behavioral modulationwas consistent across
participants, and therefore potentially attributable to differences in
gap detectability on the basis of stimulus acoustics [e.g., whether
gaps were potentially simply more detectable in the peak versus
trough of the stimulus frequency modulation (FM)], we fit single-
cycle cosine functions to the binned hit rate data as a function
of FM stimulus phase, separately for the rising and falling
amplitude modulation (AM) stimulus phases (Fig. S1A). From
best-fitting cosine functions, we estimated three dependent
measures (Fig. S1B): mean performance, performance range,
and optimal FM phase.
First, mean performance was taken as the intercept of the fitted

cosine function and reflects the overall performance level, ig-
noring modulation by FM stimulus phase. Second, performance
range corresponded to the peak-to-trough distance of the fitted
cosine function and is related to the depth of behavioral mod-
ulation by FM stimulus phase. Third, optimal FM stimulus phase
was taken as the FM stimulus phase that corresponded to the peak
of the fitted cosine function; that is, the peak predicted perfor-
mance. Performance range and mean performance values were
compared between the rising and fallingAMphases, using separate
paired-sample t tests. Optimal stimulus phases were tested for
nonuniformity, using separate Rayleigh tests.
We did not observe significant differences between the rising

and falling AM stimulus phases for either mean performance or
performance range [mean performance: t(16) = 0.90, P = 0.38,
r = 0.22; performance range: t(16) = 1.22, P = 0.24, r = 0.29].
With respect to optimal FM stimulus phase, separate Rayleigh
tests were significant only for the falling AM stimulus phase (z =
4.26, P = 0.01, r = 0.50), not for the rising AM stimulus phase
(z = 0.64, P = 0.53, r = 0.19).

Gap-Evoked Responses. We also analyzed the relationship of gap-
evoked responses (ERPs) to behavioral performance and to pres-
timulus phase effects. First, we simply compared ERPs resulting
from detected gaps (hits) versus undetected gaps (misses; Fig. S2A).
ERPs for hits versus misses were compared using a paired-samples
t test and a cluster-based correction for multiple comparisons, as
implemented in the Fieldtrip framework (1). We observed higher
ERP magnitudes for hits relative to misses, and in particular in the
time windows of the first negative (N1; 0.13–0.28 s) and subsequent
positive (P2; 0.43–0.64 s) deflections after gap onset. In our sub-
sequent analyses, we focus on the N1 because the later positive
deflection overlapped with the time window during which re-
sponses were made. The central topography of the N1 is consistent
with auditory cortex generators.
Next, we conducted a more fine-grained analysis of the relation

between gap detection and N1 magnitude. Single trials were
binned on the basis of N1magnitudes (into 10 percentile bins with
15% width), and hit rates were calculated for each percentile bin.
For each participant, we fit a linear function to hit rates as
a function of N1-magnitude percentile and tested the resulting
slopes against zero, using a single-sample t test [t(16) = −2.75,
P = 0.01, r = 0.57]. Higher hit rates were associated with larger N1
magnitudes (Fig. S2B).
Finally, we examined the effects of pre-gap phase on gap-

evoked responses. The analysis pipeline was the same as for the
analysis of pre-gap phase effects on hit rates. In brief, pre-gap
phase was estimated from the Fourier output of a wavelet con-
volution applied to 4-s epochs centered on gap onset. Epochs were

not high-pass filtered but were detrended before removing the
ERP from the postgap time window by multiplication with half
a Hann window (Fig. S2A). ERPs were separately estimated from
the same epochs; for analysis of ERPs, the poststimulus time-
window was left intact and the full epoch was bandpass-filtered
between 1 and 15 Hz. N1 magnitudes were estimated for single
trials from electrode Cz by averaging over the time window
ranging between 0.18 and 0.22 s. N1 magnitudes were then bin-
ned simultaneously on the basis of pre-gap 3.1-Hz and 5.075-Hz
neural phase and were plotted on a torus (Fig. S2C). N1 mag-
nitudes were largest when the gap occurred in the rising phase of
both entrained neural oscillations (3.1 Hz: −2.18 ± 0.47 rad,
mean ± variance; 5.075 Hz: −1.00 ± 0.55 rad). Interestingly, the
best phase for the behavioral effect and the best phase for N1
magnitude were separated by π/2 radians, which is consistent with
what we observed in a previous study using only one entraining
frequency (2).

Reversing FM and AM Frequencies Yields Similar Behavioral Results.
In an additional behavioral experiment, gap-detection data were
obtained from an independent sample of 18 normal-hearing
participants (mean age = 25.3 y, SD = 3.5 y; 7 women). Stimuli
were identical to those used in the experiment proper, with the
critical exception that the FM and AM rates were reversed; that
is, the complex rhythm was composed of a 3.1-Hz AM and
a 5.075-Hz FM. We did this to rule out the possibility that our
main observed result (behavioral comodulation by two entrain-
ing stimulus rhythms) was specific to our choice of stimulation
rates that mimicked characteristics of natural speech.
The results were very similar to the experiment proper (Fig. S3).

Individual participants showed strong and significant modulation
of behavior by FM-stimulus phase, as indexed by significant cir-
cular–linear correlations between FM phase and hit rate (rising
AM phase: z = 3.67 P < 0.001, r = 0.46; falling AM phase: z =
3.71, P < 0.001, r = 0.47), which moreover did not differ between
AM stimulus phases [t(17) = 0.15, P = 0.88, r = 0.04]. In addition,
estimated periodicity in behavioral performance patterns re-
flected the FM rate (5.075 Hz) and its harmonic (10.15 Hz).
Finally, we confirmed that the behavioral modulation was not

driven by consistent detectability differences attributable to
stimulus acoustics. We observed a significant difference between
AM phases for mean performance [t(17) = 2.69, P = 0.02, r =
0.56], but not for performance range [t(17) = 0.45, P = 0.66, r =
0.11]. Moreover, with respect to optimal FM phase, separate
Rayleigh tests were nonsignificant for both the rising AM phase
(z = 0.71, P = 0.50, r = 0.20) and the falling AM phase (z = 2.13,
P = 0.12, r = 0.35).

Consequences of Independent Component Analysis on Phase Estimation.
We also conducted an analysis to test whether application of in-
dependent component analysis (ICA) could have affected the phase
of the electroencephalography (EEG) signal, and thereby our
analysis of pre-gap phase. For each participant and for each single
trial, we estimated pre-gap phase (in the 24 ms preceding gap
onset). To explore the potential effects of ICA on EEG phase
across frequencies, we estimated pre-gap phase for all frequencies
between 0.5 and 15 Hz (in 0.5-Hz steps). We also estimated phase
for data that had not been subjected to ICA but otherwise were
preprocessed in the same manner as the ICA data. Then, for each
trial, we calculated the difference between the estimated phases as
the circular distance between the per trial phase estimates for the
ICA data and the corresponding phase estimates for the non-ICA
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data. If ICA did not introduce phase distortions into the data, we
would expect the average circular distance between single-trial
phase estimates to be zero.
Fig. S4 shows the distribution of single-trial phase estimates for

a single participant for non-ICA data and ICA data for three fre-
quency bands: two corresponding to the stimulation frequencies in
the current study and 10 Hz (phase estimates for the same partic-
ipant are shown for all three frequencies). We found no evidence
that ICA distorted the phase of the signal. In fact, the distribution of
phase differences (between ICA and non-ICA data) for each single
participant had a mean of 0 radians and a resultant vector length
equal to 1 for all tested frequencies (0.5–15 Hz). Moreover, taking
all single trials for all participants together in a single calculation
also yielded a mean phase difference of 0 radians and a resultant
vector length equal to 1 for all frequency bands.
To confirm that this analysis would have been sensitive to single-

trial phase differences, we also shuffled the non-ICA phases over
trials separately for each participant and each frequency and then
repeated the analysis on the basis of circular distances between
phase estimates with and without ICA. When we compared ICA
phase with shuffled non-ICA phase, single-trial circular distances
were approximately uniformly distributed, and the average re-
sultant vector length (across participants and frequencies was
0.046 ± 0.002 SEM).
Thus, we conclude that removal of components using ICA has

no biasing effects on estimates of phase.

SI Materials and Methods
Behavioral Data. To test whether hit rate was significantly mod-
ulated by FM stimulus phase in each individual participant, cir-
cular–linear correlations were calculated between the binned
FM stimulus phases and respective hit rates for each listener,
separately for the rising and falling phases of the AM. To test the
strength of these correlations across listeners, we conducted per-
mutation tests. On each of 1,000 iterations (separately for AM
phases), the correspondence between FM stimulus phase (after
binning) and behavioral data was shuffled, and circular–linear
correlations were calculated. On the basis of the resulting per-
mutation distribution of circular–linear correlation coefficients,
a z-score for the actual correlation between FM stimulus phase
and hit rate was calculated by subtracting the distribution’s mean
from the observed correlation score and dividing this difference by
the distribution’s SD. Resulting z-scores were tested against 0,
using single-sample t tests (two-tailed) separately for the rising
and falling AM stimulus phases. Moreover, we compared corre-
lation strengths (z-scores) between AM stimulus phases (rising
versus falling), using a paired-samples t test (two-tailed).
Next, we estimated the periodicity present in the behavioral

data to confirm it corresponded to the FM stimulation frequency.
Separately for the rising and falling AM phases, six cycles of each
participant’s data were concatenated. Then a cosine function was
fit to hit rates as a function of time. Critically, the frequency of
the cosine fit took on values ranging between 1 and 10 Hz. For
each frequency, the coefficient of determination, R2, provided
a goodness-of-fit measure.
We also investigated whether acoustic modulations consistently

affected behavioral performance measures that were independent
from the circular–linear correlation across participants. We fit
single-cycle cosine functions to the binned hit rate data as a
function of FM stimulus phase, separately for the rising and falling
AM phases. From best-fitting cosine functions, we estimated three
dependent measures. First, mean performance was taken as the
intercept of the fitted cosine function and reflects the overall
performance level, ignoring modulation by FM stimulus phase.
Second, performance range corresponded to the peak-to-trough
distance of the fitted cosine function and is related to the degree
of behavioral modulation by stimulus phase. Third, optimal FM
stimulus phase was taken as the FM phase that corresponded to

the peak of the fitted cosine function; that is, the peak predicted
performance. Performance range and mean performance values
were compared between the rising and falling AM phases, using
separate paired-samples t tests (two-tailed). Optimal stimulus
phases were tested for nonuniformity, using separate Rayleigh tests.

Electroencephalography Data. Data were preprocessed twice; one
pipeline was geared toward frequency-domain analysis of full-
stimulus epochs, and the second was geared toward analysis of
prestimulus phase in short epochs centered on targets (gaps). The
former involved first high-pass filtering, at 0.9 Hz (zero-phase),
the continuous EEG signal, and then defining full-stimulus
epochs as 1.5 s before stimulus onset to 15.5 s after stimulus onset
to capture the response to the full 14-s stimulus. Epoched data
were then low-pass filtered at 100 Hz (zero-phase) and re-
referenced to linked mastoids. Blinks, muscle activity, electrical
heart activity, and noisy electrodes were removed from the signal
with ICA, using the Fieldtrip-implemented runica method (3),
which performs ICA decomposition using the logistic infomax
algorithm (4) with principle component dimension reduction.
Individual trials were subsequently removed if the amplitude
range exceeded 120 μV; of the 200 presented trials, the median
number of rejected trials was 10 (±12.5 semi-interquartile
range). After artifact rejection, full-stimulus epochs were ana-
lyzed in the frequency domain to examine oscillatory brain re-
sponses entrained by the 3.1- and 5.075-Hz stimulation.
The latter pipeline omitted high-pass filtering, and thus first

involved epoching (−1.5 to 15.5 s) and then low-pass filtering, re-
referencing, and ICA artifact removal. We subsequently rejected
the same set of trials identified by the artifact rejection routine
from the previously described pipeline. After artifact rejection,
shorter epochs were defined that ranged between −2 s and +2 s
with respect to each gap onset. Further analysis of prestimulus
phase effects is described here.
Frequency-domain analysis. The initial and final seconds of stimu-
lation were first removed to eliminate onset- and offset-evoked
responses. Then time-domain data were multiplied with a Hann
window before analysis to eliminate artifacts related to the as-
sumption of periodic data that is inbuilt in the fast Fourier
transform (FFT). For the current data, we performed the FFT in
two different ways. First, “total” amplitude was calculated by
averaging frequency-domain representations of single-trial data.
Second, “evoked” amplitude was calculated in two FFTs on trial-
averaged time-domain data that were first realigned either with
respect to FM stimulus phase (“FM evoked”) or AM stimulus
phase (“AM evoked”). That is, because the starting phase of
both the AM and FM stimulation was randomized from trial to
trial, the FFT analysis was performed twice: once with attention
to each modulation type. Single-trial brain responses were shifted
in time so that either the FM (3.1 Hz) or the AM (5.075 Hz)
stimulation would have been perfectly phase-locked across trials,
and FFTs were performed on trial-averaged time-domain data.
To test for entrained neural responses, we performed

hypothesis-directed nonparametric Wilcoxon signed-rank tests
for spectral amplitudes at the stimulation frequencies and for
their second harmonics against the median spectral amplitude
over the 16 neighboring frequency bins centered on the stimu-
lation frequencies (8 on either side of the target frequency; two-
tailed tests, ref. 5). For total amplitude representations, we tested
both FM and AM frequencies as well as harmonics. For FM- and
AM-evoked amplitude representations, we tested only the FM or
AM stimulation frequencies, respectively, as well as their har-
monics. For visualization, we normalized amplitudes by sub-
tracting from every frequency bin the median over the 16
neighboring bins in the same way that we performed statistics.
Both FFT plots and topographies show normalized amplitudes.
Prestimulus phase effects. Prestimulus phase analyses were conducted
only for electrode Cz. First, the single-trial time-domain signal was
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detrended (using linear regression), and then gap-evoked responses
were removed from the postgap onset time window by multipli-
cation with half of aHannwindow that ranged between 0 and 50ms
postgap onset and was zero thereafter (“ERP-free”; Fig. S2). This
was done to eliminate the possibility that “smearing” of the
evoked response back into the prestimulus period by the wavelet
convolution could produce spurious prestimulus phase effects (for
a similar approach, see ref. 6). Next, the time-domain data were
submitted to a wavelet convolution (wavelet width = 3 cycles) that
yielded complex output in two frequency bins centered on 3.1 and
5.075 Hz (± 0.25 Hz) and with 2-ms temporal resolution. Complex
output was then converted to phase-angle time series.
Prestimulus phase in each frequency band was estimated for

each trial as the circular mean of phase angle values in the 24-ms
time window preceding gap onset. Trials were then sorted into an
18 × 18 grid of overlapping bins (bin width = 0.6π), according
to pre-gap neural phase in the frequency bands of interest (i.e.,
3.1 × 5.075 Hz). We calculated the same three dependent mea-
sures as for the behavioral data, except that cosine fits were con-
ducted for hit rate as a function of 3.1-Hz neural phase separately
for each of the 18 values of 5.075-Hz neural phase (Fig. 4C). That
is, for each listener, we estimated 18 values of 3.1-Hz-driven mean
performance, performance range, and optimal 3.1-Hz-driven neural
phase, respectively. We then tested whether any of these behavioral
measures (estimated as a function of 3.1-Hz neural phase) de-
pended on the specific phase in the 5.075-Hz frequency band. For
optimal neural phase, we did this using a Watson-Williams circular
one-way ANOVA. For performance range and mean performance,
we used separate one-way repeated-measures ANOVAs.
To test whether neural phase effects on gap-detection per-

formance were interactive, we estimated the degree to which hit
rates were modulated by neural phase in the 3.1-Hz frequency
band alone, in the 5.075-Hz frequency band alone, and in the two
frequency bands taken together. To do so, we sorted single-trial
accuracies into 18 bins on the basis of neural phase only in the 3.1-

or 5.075-Hz frequency bands. For each frequency band, we cal-
culated a behavioral modulation index, which was simply the
maximumminus the minimum hit rate after sorting and averaging
in each bin. For the “interaction” effect, we sorted single-trial
accuracies simultaneously by 3.1- and 5.075-Hz pre-gap neural
phase, and we again calculated a behavioral modulation index by
subtracting the minimum hit rate from the maximum hit rate for
each participant. Finally, we conducted pairwise tests of the
behavioral modulation index in each single frequency band rel-
ative to the combined frequency bands (and for the two single
frequency bands against each other), using paired-samples t tests
(two-tailed).
Finally, we tested whether the observed behavioral comodu-

lation was specific to the neural frequency bands entrained by our
stimulation. From the complex output of a wavelet convolution
yielding prestimulus complex values between 1 and 10 Hz (in 0.25-
Hz steps), we estimated prestimulus neural phase in a time window
corresponding to 10% of a cycle. We then calculated a behavioral
modulation index for every frequency band between 1 and 10 Hz
separately, as well as for every pairwise combination of frequencies
between 1 and 10 Hz. We subsequently calculated an interaction
strength metric by taking the difference between the “interaction”
modulation index and the mean of the two individual-frequency
modulation indices. We tested the interaction strength for the
combination of the two entrained frequency bands (3.1 and 5.075
Hz) against all other frequency combinations, using a permutation
test. That is, for each listener, we formed a permutation distri-
bution by calculating interaction strength for 1,000 random pair-
wise frequency combinations. Then, we compared interaction
strength in the 3.1-Hz × 5.075-Hz bin to the permutation distri-
bution, which yielded a z-score for each participant that reflected
the frequency-specificity of the behavioral comodulation effect.
Z-scores were tested against 0, using a single-sample t test at the
second-level (two-tailed).
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Fig. S1. Dependent measures from cosine fits to single-participant behavioral data. (A) Single-participant hit rate data for all participants as a function of FM
stimulus phase, separately for the rising (magenta) and falling (cyan) AM phases. Best-fit cosine functions are overlaid (dotted lines). (B) Dependent measures
from cosine fits: mean performance (Left) corresponds to the intercept of the fitted cosine function, performance range (Center) corresponds to the peak-to-
trough distance of the fitted function, and optimal FM stimulus phase (Right) corresponds to the FM stimulus phase yielding peak predicted performance.
Neither mean performance nor performance range differed significantly between the rising and falling AM phases. For optimal FM phase, a test to compare
rising versus falling AM phases was not performed because the mean resultant vectors were not sufficiently long.

Fig. S2. (A) ERPs for detected gaps (hits, red) and undetected gaps (misses, blue). Shading shows SEM, and the gray bars at the top of the figure mark time
windows within which the ERP magnitudes differed significantly (P < 0.05 with cluster correction) for hits versus misses. The topography corresponds with the
grand average magnitude (microvolts) in the time window ranging between 0.18 and 0.22 s after gap-onset (N1 time window). The thin black line in the time-
domain representation (“ERP-free average”) shows the grand average ERP where the poststimulus gap-evoked response has been muted by multiplication
with half a Hann window. The ERP-free signal was used for estimating prestimulus phase. (B) Hit rates plotted as a function of N1-magnitude percentile bins.
Small percentile values correspond to stronger (increasingly negative) N1s. Larger hit rates were associated with larger N1s. (C) N1 magnitudes plotted on
a torus as a function of prestimulus 3.1-Hz neural phase (larger, outside circle) and 5.075-Hz neural phase (smaller, inner circle). N1s were maximal (most
negative) when the gap fell simultaneously into the rising phase of both entrained neural oscillations.
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Fig. S3. (A) Single-participant behavioral data (gap-detection hit rates as a function of FM stimulus phase); best-fitting cosine functions are overlaid. (B) Mean
(±SEM) z-values corresponding to circular–linear correlation strengths between hit rates and FM stimulus phase (Left). Across participants, behavior was
significantly modulated by FM stimulus phase for both the rising and falling AM phases. Asterisks indicate significance at P < 0.001. Moreover, estimated hit-
rate modulation frequencies (Right) matched the FM stimulation frequency and its harmonic. (C) Mean performance (Left), performance range (Center), and
optimal FM phase (Right) shown separately for the rising (magenta) and falling (cyan) AM stimulus phases. Mean performance differed somewhat between
rising and falling AM stimulus phases (P = 0.02), but performance range did not (P = 0.79). Distributions of optimal FM stimulus phases were not significantly
different from uniform for either the rising or the falling AM phase. A test to compare rising versus falling AM stimulus phases was not performed because the
mean resultant vectors were not sufficiently long.
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Fig. S4. Results of a comparison of phase estimates for data subjected to ICA for artifact removal compared with non-ICA data. Rose plots show the dis-
tribution of single-trial phase estimates for a single participant from non-ICA data (“No ICA”) and data subjected to ICA (“ICA”). Calculating the circular
distance between single-trial phase estimates for non-ICA versus ICA data yielded a mean phase difference of 0 radians and a resultant vector length of 1 for all
participants and all frequencies (“No ICA – ICA”). Finally, taking all trials from all participants together in one analysis (histogram, “No ICA – ICA”) also yielded
a mean phase difference of 0 and resultant vector length of 1.
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