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Neural Microstates Govern Perception of Auditory Input
without Rhythmic Structure
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Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural
oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural
dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for
rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps
embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with
three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous
combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local
fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations,
good performance hinges on complex neural states that vary from moment to moment.
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Introduction
The neural system’s capability to rapidly adapt to changing con-
texts is underpinned by its capacity to pliably form and dissolve
neural cell assemblies (Breakspear et al., 2004). The necessity for
flexible neural (re)organization is likely especially valuable when
the sensory context is unpredictable, as when stimuli lack rhyth-
mic structure. We hypothesize that the dynamics of a neural sys-

tem operating in the absence of an organizing stimulus rhythm
will be characterized by more complex contingencies between the
phase of low-frequency neural activity and psychophysical per-
formance than described previously for scenarios where entrain-
ing rhythms increased predictability and simplified neural
dynamics.

Rhythmic structure is ubiquitous in behaviorally relevant en-
vironmental stimuli (Patel, 2008) and confers advantages such as
enhanced detection or discrimination of temporally predictable
relative to unpredictable target stimuli (Jones et al., 2002; McAu-
ley and Jones, 2003; Rohenkohl et al., 2012; Henry and
Herrmann, 2014; Lawrance et al., 2014.) The hypothesized mech-
anism underlying this behavioral advantage is entrainment of
neural oscillations by rhythmic stimulus structure (Bishop, 1933;
Lindsley, 1961; Buzsáki and Draguhn, 2004; Lakatos et al., 2005),
which brings the excitable phase of the oscillation into line with
temporally predictable stimulus events. Critically, in the context
of complex rhythmic structure comprising two entraining fre-
quencies, coupling between performance and neural phase is spe-
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Significance Statement

Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms.
However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no
rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while partic-
ipants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands:
delta, theta, and alpha. Participants’ ability to detect gaps depended on different numbers of frequency bands—sometimes one,
sometimes two, and sometimes three—at different times. Changes in the number of frequency bands that predict perception are
a hallmark of a complex neural system.
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cific to the entrained frequency bands and is not observed in
frequency bands unrelated to the stimulus rhythm (Henry et al.,
2014). Hence, neural entrainment by rhythmic structure would
seem to reduce the dimensionality of complex neural dynamics
(Freeman et al., 2001; Singer, 2013).

However, not all behaviorally relevant sensory input is well
structured in time. In the absence of rhythmic structure, percep-
tion is hypothesized to proceed in a so-called “continuous,” or
vigilance, mode (Schroeder and Lakatos, 2009; Schroeder et al.,
2010; Henry and Herrmann, 2012), during which low-frequency
neural activity should have a reduced impact on performance
because of an overall suppression of power (Schroeder and Laka-
tos, 2009). Several studies have observed modulation of psycho-
physical performance by neural phase in the absence of rhythmic
structure (Busch et al., 2009; Busch and VanRullen, 2010; Ng et
al., 2012). Nonetheless, it remains an open question whether and
how neural phase interacts across frequency bands to affect per-
ception when auditory stimuli are not rhythmically structured
and thus unpredictable.

We hypothesized that without rhythmic structure to increase
stimulus predictability and potentially reduce the dimensionality
of the neural state space via entrainment, neural phase effects
would likely depend on higher-order interactions between phases
in multiple frequency bands that change from moment to mo-
ment. The current human electroencephalography (EEG) exper-
iment probed the complex neural states (here referred to as
microstates) that lead to optimal performance in the absence of
environmental rhythmic structure. We applied a novel analysis
approach that considered instantaneous neural phase in multiple
frequency bands and in different numbers of frequency bands at
different times. We describe three neural microstates that yield
optimal psychophysical performance and reflect a signature of a
complex dynamic neural system.

Materials and Methods
Participants
Eleven native German speakers (six female) with self-reported normal
hearing took part in the study. All were right handed, and the mean age
was 25.0 years (SD, 2.5 years). Data for one additional participant were
discarded because of technical problems with the EEG recording. All
participants gave written informed consent and received financial com-
pensation. The procedure was approved of by the ethics committee of the
medical faculty of the University of Leipzig and in accordance with the
declaration of Helsinki.

Stimuli
Auditory stimuli were generated by MATLAB software (MathWorks) at
a sampling rate of 44,100 Hz. Stimuli were 14 s narrow-band noises
without low-frequency rhythmic structure (Fig. 1a). The center fre-
quency of the complex carrier signals was randomized from trial to trial
and took on values between 800 and 1200 Hz. All stimuli comprised 30
frequency components sampled from a uniform distribution with a 500
Hz range around the center frequency. The amplitude of each compo-
nent decreased linearly with increasing distance to the center frequency.
All stimuli were normalized with respect to peak amplitude and were
presented at a comfortable level (!60 dB SPL).

Two, three, or four near-threshold gaps were inserted into each 14 s
stimulus (gap onset and offset were gated with half-cosine ramps) with-
out changing the duration of the stimulus. Gaps never occurred in the
first or final 1.5 s of the 14 s stimulus and were constrained to fall no
closer to each other than 1.5 s.

Procedure
Gap duration was first titrated for each individual listener such that
detection performance was centered on 50%; the median individual
threshold gap duration was 8.4 ms [semi-interquartile range (sIQR),
"1.8 ms]. For the main experiment, the electroencephalogram was re-
corded while listeners detected gaps embedded in 14 s long narrow-band
noise stimuli by pressing a button when they detected a gap. Listeners
performed the task with eyes open while fixating a central cross. Overall,

Figure 1. a, Acoustic stimulus structure. Top, Stimuli were narrow-band noises without low-frequency rhythmic structure. Hilbert envelope is overlaid in green. Two, three, or four gaps (marked
by arrows) were embedded in each 14 s stimulus. Bottom, Frequency-domain representation of acoustic stimuli for a single representative participant; amplitude spectra for individual stimuli are
shown in gray, and the average over stimuli is overlaid in green. Inset, Average amplitude spectrum up to 100 Hz. b, Frequency-domain neural responses. Top, Autopower (left, both oscillatory and
1/f ! contributions) and cross-power (right, 1/f ! contributions only) spectral densities calculated for coarse-graining spectral analysis, plotted in log–log coordinates for single participants (green,
gray) with the mean overlaid (black, thick line). Fits from which power-law exponents, !, were estimated for low (0.1– 8 Hz) and high (12–100 Hz) frequencies are overlaid in pink. Subtracting
cross-power spectral density from autopower spectral density yields an estimate of the oscillatory contributions to power (inset, left). Oscillatory power was significantly nonzero at all frequency bins
between 3.4 and 10.75 Hz (marked by gray bar). Power-law exponents, !, differed significantly between auto- and cross-power spectral densities for both low ( p # 0.001) and high ( p $ 0.003)
frequencies (inset, right). Topographies are shown below for the classically defined delta (1– 4 Hz), theta (4 – 8 Hz), and alpha (8 –12 Hz) frequency bands in the autopower spectral density function.
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each listener heard a total of 120 stimuli (three listeners initially heard
160, but the last 40 were discarded during subsequent processing); gaps
were considered hits when the listener responded within 1.5 s of a gap
presentation. Each listener was presented with a total of 480 gaps. The
experiment lasted about 3 h, including preparation of the recording
setup.

Data acquisition and analysis
The electroencephalogram was recorded from 26 Ag–AgCl scalp elec-
trodes mounted on a custom-made cap (Electro-Cap International), ac-
cording to the modified 10 –20 system, and additionally from the left and
right mastoids. Bipolar horizontal and vertical electroocculograms
(EOGs) were also recorded. Signals were recorded continuously with a
passband of DC to 135 Hz and digitized at a sampling rate of 500 Hz
(TMS International). The on-line reference was the nose, and the ground
electrode was placed at the sternum. Electrode resistance was kept under
5 k%. All EEG data were analyzed offline using custom MATLAB scripts
and FieldTrip software (Oostenveld et al., 2011).

Raw data were epoched from 1.5 s before stimulus onset to 15.5 s
following stimulus onset to capture the response to the full 14 s stimulus.
Epoched data were then low-pass filtered at 100 Hz (zero-phase, sixth-
order Butterworth) and rereferenced to linked mastoids. Blinks, muscle
activity, electrical heart activity, and noisy electrodes were removed from
the signal using independent component analysis (ICA) using the
FieldTrip-implemented runica method (Makeig et al., 1996), which per-
forms ICA decomposition using the logistic infomax algorithm (Bell and
Sejnowski, 1995) with principle component dimension reduction. We
demonstrated previously that the ICA routine implemented here does
not bias estimates of neural phase (Henry et al., 2014). Individual trials
were subsequently removed if the amplitude range exceeded 120 "V; of
the 120 presented trials, the median number of rejected trials was 10
("9.4 sIQR). Following artifact rejection, full stimulus epochs were an-
alyzed in the frequency domain, and shorter epochs were defined that
ranged between &2 s and '2 s with respect to each gap onset. Further
analysis of pre-gap phase effects is described in Pre-gap phase effects,
below.

Analysis of temporal structure in neural activity
Although the current stimuli did not contain low-frequency rhythmic
structure (Fig. 1A) by which low-frequency neural activity could have
been entrained, we nonetheless examined neural responses in the fre-
quency domain to test whether there was low-frequency rhythmic (os-
cillatory) structure in the neural responses. For this purpose, we made
use of coarse-graining spectral analysis (Yamamoto and Hughson, 1991;
He et al., 2010). Neural responses corresponding to '1 to '14 s with
respect to the auditory stimulation were considered so that onset- and
offset-evoked responses would not be included in the spectral analysis.

Coarse-graining spectral analysis takes advantage of the self-similar
nature of time series with 1/f ! structure (Mandelbrot and Van Ness,
1968) to separate 1/f ! (i.e., arrhythmic) and oscillatory contributions to
total power. Two time series are constructed, one from the first half of the
total time points, T, in the original time series [x(t)!t $ 1, 2, 3, . . ., T/2],
and a coarse-grained time series from every second time point in the
original time series [x((t)!t $ 1, 3, 5, . . ., T]. First, the total power of the
neural signal (comprising both 1/f ! and oscillatory activity) is calculated
as the autopower spectral density of x(t). Then, the cross-power spectral
density is calculated between x(t) and x((t). The cross-power spectral
density is assumed to reflect only power of 1/f ! noise. Subtracting the
cross-power spectral density from the autopower spectral density yields
the 1/f !-free spectrum of X(t), that is, the oscillatory contributions to the
power spectrum (Yamamoto and Hughson, 1991).

We performed coarse-graining spectral analysis on single-trial
time series data at each electrode; we report results for electrode Cz.
Autopower and cross-power spectral densities were calculated using
MATLAB’s cpsd function, which returns the cross-power spectral density
estimate of two time series using Welch’s modified periodogram method.
The power spectral densities were averaged over eight overlapping (50%
overlap) Hamming-windowed sections of the 13 s neural response.

Since it was not clear the extent to which subtracting the cross-power

from the autopower spectral density might leave residual, chance-level
power not attributable to neural oscillations, we tested significance by
comparing against simulated data. For each participant, we simulated
1000 time-domain signals with 1/f ! structure [! $ 2, as in the study by
He et al. (2010)]. For each signal, we performed coarse graining. To make
the power of the simulated signal directly comparable to the power of the
neural signal, both differences (cross-power minus autopower) were
normalized by their sum (cross-power plus autopower). Then, for each
frequency bin between 0 and 15 Hz, we calculated a z score for the
normalized difference from the neural signal with respect to the distri-
bution of simulated signals. We then tested the resulting z scores against
zero across participants using pointwise single-sample t tests. The p val-
ues were adjusted using a cluster-based correction for multiple compar-
isons (Maris and Oostenveld, 2007). The t statistics were summed within
each “cluster” of consecutive frequency points. Then, on each of 1000
iterations, the labels identifying trials as having z scores or zero values
were shuffled, and the t test and summing of values within consecutive
clusters was repeated. A permutation distribution was formed from the
maximum summed t statistic on each iteration. Summed t values from
the original data set were considered significant when they were more
extreme than the bottom 95% of the permutation values in the positive
direction (corresponds to a one-tailed # $ 0.05).

We also tested for differences in estimates of the power-law exponent,
!, between the autopower and cross-power spectral density functions.
Power law exponents, !, were derived from linear fits to the auto- and
cross-power spectral density functions plotted in log–log coordinates,
separately for low frequencies (0.1 to 8 Hz) and high frequencies (12 to
100 Hz); we chose to discontinue the power-law fits in the alpha band
because of pronounced peaks in this range that deviated from the roughly
straight-line function of the power spectra plotted in log–log coordinates
(Fig. 1b).

Pre-gap phase effects
To test for modulation of target (gap) detection performance due to
prestimulus neural phase, we defined 4 s target epochs centered on the
onset of each gap. We chose to perform pre-gap phase analyses only for
electrode Cz for two reasons: First, the Cz electrode is located at the
intersection of the topographies of spectral power for the delta, theta, and
alpha frequency bands. Thus, the signal from this electrode reflects the
combined contributions of delta, theta, and alpha generators. Second,
and more practically, the computational demands of the present analysis
prevented us from being able to perform the analysis for each sensor.
However, we report topographies of the degree of optimal pre-gap phase
clustering across participants (i.e., Rayleigh z values), which we used to
define the microstates discussed here.

First, the single-trial time-domain signal was detrended (using linear
regression), then gap-evoked responses were removed from the post–
gap onset time window by multiplication with half of a Hann window
that ranged between 0 and 50 ms after gap onset (and was zero thereaf-
ter). This was done to eliminate the possibility that “smearing” of the
evoked response (or response differences between hit and miss trials)
back into the prestimulus period by the wavelet convolution could pro-
duce spurious prestimulus phase effects (Lakatos et al., 2013; Henry et al.,
2014). We conducted a simulation to confirm that this method is robust
against phase distortions and found that application of the Hann window
led to a very small phase negative phase shift (&0.22 rad on average) that
was consistent across frequencies (between 1 and 15 Hz). Critically, the
magnitude of the phase shift was identical for detected and undetected
gaps, regardless of differences in postgap evoked responses. Thus, the
method does not introduce a systematic phase difference between
detected and undetected gaps that could have influenced the current
results.

Next, the time-domain data were submitted to a wavelet convolution
(wavelet width, 3 cycles) that yielded complex output in frequency bins
ranging between 1 and 15 Hz (in 0.5 Hz steps) and with 2 ms temporal
resolution (i.e., 500 Hz sampling frequency). Complex output was then
converted to phase-angle time series. For each time–frequency bin in the
range 1–15 Hz and for each time point in the window ranging from &0.5
to 0 s before gap, trials were sorted into 18 overlapping bins ranging
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between &$ and '$ (bin width, 0.6$) based on single-trial phase values,
and the hit rate was subsequently calculated for each bin. Then, the
degree of behavioral modulation by the prestimulus phase was estimated
in each time–frequency bin as the circular–linear correlation between the
18 phase angles and hit rates.

Circular–linear correlations in each time–frequency bin were con-
verted to z scores based on a permutation procedure, in which single-trial
behavioral responses were shuffled so that the relation to single-trial
neural phase values was randomized. Trials were rebinned, and a
circular–linear correlation was calculated; correlation values from 1000
iterations of this procedure made up a permutation distribution, from
which a z score for the original circular–linear correlation was calculated.
A time–frequency matrix (1 to 15 Hz, &0.5 to 0 s) of z scored circular–
linear correlation coefficients was calculated for each participant. Then, a
single-sample t test comparing the mean z score against 0 was calculated
for each time–frequency bin using the FieldTrip-implemented cluster-
based multiple-comparisons correction with a weighted cluster mean
(wcm) criterion (wcm, 1.5) that takes into account both cluster size and
the magnitude of test statistics within the cluster. In each resulting sig-
nificant cluster, the consistency of the phase effects across participants
was examined by testing the distribution of optimal neural phases (the
phase where the hit rate was highest, estimated from cosine fits to indi-
vidual participant data) against a uniform von Mises distribution using
separate Rayleigh tests for each frequency band; p values were adjusted
using a false-discovery-rate (FDR) correction for multiple comparisons
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).

Pre-gap phase effects in delta-governed subsets of trials. To explore the
possibility that pre-gap phase effects in the theta and alpha frequency
bands might have depended on instantaneous delta states, we split the
data into four overlapping bins (bin width, $) based on the delta phase.
Separately for each delta bin, single trials in the theta, low-alpha, and
high-alpha clusters were sorted into 18 overlapping phase bins as de-
scribed above (bin width, 0.6$). Within each cluster, the consistency of
the phase effects across participants was examined by testing the distri-
bution of optimal neural phases (estimated from cosine fits to individual
participant data) against a uniform von Mises distribution using separate
Rayleigh tests for each delta bin; p values were adjusted using a false-
discovery-rate correction for multiple comparisons (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001).

In the case that we observed a significant Rayleigh test in only one delta
bin (R*), we tested the resultant vector length for that bin against the
mean resultant vector length averaged across the remaining delta bins
(R ns). Since the resultant vector reflects an across-participant measure,
we opted for a permutation strategy to test statistical significance be-
tween resultant vectors. On each of 1000 iterations, for each participant
and each of the four delta bins, binned hit rates were randomly rotated
with respect to their corresponding phase values (across the 18 bins),
keeping intact their relative ordering and nonindependence due to the
use of overlapping bins. The optimal neural phase was estimated from a
cosine fit to the permuted data. Then, the resultant vector length was
calculated across participants for each delta bin. The mean resultant
vector length across the R ns bins was subtracted from the resultant vector
length from the R* bin. The result was a distribution of 1000 R* & R ns

differences against which we compared the actual R* & R ns difference
calculated from the real data. The z score and corresponding p value
obtained by comparing the real value against the permutation distribu-
tion were taken as test statistics.

Higher-order interactive pre-gap phase effects in delta-governed subsets
of trials. We also examined whether gap detection depended on specific
phase–phase combinations in different frequency bands. Separately for
each of four overlapping bins based on delta phase (bin width, $), we
divided trials into a 50 ) 50 grid of overlapping bins (bin width, 0.6$) for
(1) theta and low-alpha phase, (2) theta and high-alpha phase, or (3) low-
and high-alpha phase. The hit rate grid was then smoothed with a two-
dimensional filter (MATLAB’s imfilter, modified to respect circular
axes). The motivation for using a 50 ) 50 grid in combination with
smoothing for this analysis was because a cosine fit could not be used to
estimate optimal phase for a two-dimensional data set. This is in contrast
to the unidimensional phase analysis conducted separately for each fre-

quency band and described in the previous section. Instead, we used fine
bin spacing in combination with two-dimensional smoothing to facili-
tate peak finding (i.e., locating the optimal combination of neural phases
that yielded peak hit rate).

The neural phases of the two relevant frequencies corresponding to the
peak gap-detection hit rate were retained. To statistically test the consis-
tency of cross-frequency phase–phase effects across participants, we de-
veloped a “spherical” Rayleigh test based on the equations provided by
Leong and Carlile (1998; Zar, 2014); p values were adjusted using a false-
discovery-rate correction for multiple comparisons across delta bins
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).

To test the magnitude of the spherical resultant vector for a single
significant delta bin (R*) against the magnitudes of the vectors for the
other bins (R ns), we used a permutation strategy similar to that described
above. Separately for each participant and delta bin, on each of 1000
iterations, we rotated the 50 ) 50 grid of (unfiltered) hit rates with
respect to their corresponding phase values in both frequency bands,
keeping intact their relative ordering and nonindependence due to the
use of overlapping bins. The resulting grid was then smoothed with a
two-dimensional filter, the neural phases corresponding to peak hit rate
were retained, and a spherical resultant vector length was calculated. The
mean resultant vector length across the R ns bins was then subtracted
from the value from the R* bin. The result was a distribution comprised
of 1000 R* & R ns differences, from which we determined a z score and p
value for the actual R* & R ns difference.

Time course analysis of neural microstates. To schematize the micro-
states we observed based on the above-described analyses, we simulated a
neural oscillation starting from the time–frequency centroid of each sig-
nificant cluster (delta, 1.75 Hz, &0.25 s; theta, 5.75 Hz, &0.22 s; low
alpha, 10 Hz, &0.186 s; high alpha, 12 Hz, &0.016 s) based on the iden-
tified optimal phase (across-participant average). Then, for each of three
neural microstates (i.e., different across-frequency phase combinations
that resulted in peak hit rates at different times), we estimated the phase
of the complex neural oscillation that would have optimally coincided
with gap onset under idealized conditions. To test the accuracy of our
extrapolations, we compared the predicted with the observed phase just
before gap onset (the absolute duration in which we tested pre-gap phase
depended on frequency and corresponded to 10% of a cycle). After ad-
justing the observed phase values for the &0.22 radian shift introduced
by multiplication with half a Hann window to remove the ERP (see
above, Pre-gap phase effects), we quantified the degree of inaccuracy of
our extrapolations.

As a confirmation of the relation between the three neural microstates
and gap-detection performance, we sorted each participant’s single-trial
time-domain data into three categories based on delta phase (corre-
sponding to the three microstates; we ignored trials for which delta phase
did not align with one of the microstates). We then filtered the time-
domain data into between one and three frequency bands corresponding
to the relevant frequency bands for each microstate, which we then
summed. We tested the filtered time-domain signal preceding detected
gaps (hits) against that preceding undetected gaps (misses) using paired-
sample t tests at each time point and a cluster-based correction for mul-
tiple comparisons.

We were also interested in characterizing the time courses of the prev-
alence of each microstate as well as the time course of slow behavioral
fluctuations. For each participant, we identified each single trial as be-
longing to one of three categories corresponding to the delta-governed
microstates (again ignoring trials not corresponding to any of the micro-
states described here). Trials were categorized based on the phase(s)
within the time–frequency windows identified in the previous analyses;
phase bins were constructed individually for each participant around
their own optimal phase in each frequency band (bin width, 0.6$). Then,
we estimated microstate prevalence over time using a sliding window of
300 s duration moving in 5 s steps. The same was done for binary accu-
racy values. Finally, the time courses were transformed to the frequency
domain using a fast Fourier transform after application of a Hann
window.
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Control analyses
We conducted two types of control analyses to rule out the possibilities
that any observed neural phase effects on behavior might rather have
been attributable to (1) modulation of behavior by pre-gap stimulus
acoustics or (2) fluctuations in perceptual sensitivity coupled to eye
movements.

Stimulus acoustics. It was suggested previously that neural phase effects
in the absence of rhythmic structure specifically in audition are subject to
a “third-variable problem,” whereby both neural activity and behavior
are coupled to fluctuations in stimulus acoustics (VanRullen et al., 2014).
Thus, we conducted an additional behavioral experiment (no electroen-
cephalogram was recorded) identical to that already described with the
exception that all audio files were retained for detailed acoustic analyses.
Ten individuals that were not involved in the EEG experiment partici-
pated (procedures for obtaining informed consent and financial com-
pensation were identical to the EEG experiment).

We correlated cochlea-scaled entropy (Stilp and Kluender, 2010) be-
fore gap occurrence with target detection performance in a time window
corresponding to that in which we analyzed our neural phase data (i.e.,
for 0.5 s before gap occurrence). Cochlea-scaled spectral entropy is a
measure of the relative unpredictability of acoustic signals, operational-
ized as the extent to which successive “spectral slices” differ from each
other. Cochlea-scaled entropy (in particular, the replacement or deletion
of high-entropy portions of an acoustic signal) has been shown to predict
speech intelligibility better than the replacement or deletion of vowel
segments, consonant segments, or simply segments of varying absolute
duration (Stilp and Kluender, 2010); that is, deletions of high-entropy
portions of a speech signal are more noticeable than deletions of rela-
tively low-entropy portions of the signal. Thus, we expected that pre-gap
cochlea-scaled spectral entropy might be related to gap-detection
performance.

Cochlea-scaled entropy was calculated similarly to the description in
Stilp and Kluender (2010). Each 16 ms “slice” of the stimulus was filtered
by a bank of 12 symmetrical rounded-exponential filters with center
frequencies equally spaced between 300 and 1700 Hz in equivalent-
rectangular-bandwidth (ERB) units; filter bandwidths were four times
the center frequency in ERBs (Patterson et al., 1982; Moore and Glasberg,
1983; Moore et al., 1990). The result was a 12 bin frequency histogram
where the height of each bar was the amplitude of the corresponding
filter output. Pairwise Euclidean distances were then calculated for fre-
quency histograms belonging to neighboring slices. Finally, Euclidean
distance values were averaged in a sliding rectangular window compris-
ing five slices, resulting in a time course of cochlea-scaled entropy values.

For each participant, at each time point, single trials were binned into
18 overlapping percentile bins with 30% width based on cochlea-scaled
entropy values. Gap-detection hit rates were calculated per bin and then
correlated across bins with cochlea-scaled entropy percentile. Correla-
tions were z transformed using a permutation strategy; on each of 1000
permutations, single-trial cochlea-scaled entropy values were shuffled
with respect to binary accuracy values. Data were rebinned and corre-
lated. At each time point, a z score was calculated for the actual correla-
tion coefficient with respect to the mean and standard deviation of the
correlations comprising the permutation distribution. Finally, z scores
were tested against zero across participants using pointwise single-
sample t tests. The p values were adjusted using a cluster-based correction
for multiple comparisons (Maris and Oostenveld, 2007). The t statistics
were summed within each “cluster” of consecutive time points. Then, on
each of 1000 iterations, the labels identifying trials as having z scores or
sign-flipped z scores were shuffled, and the t test and summing of values
within consecutive clusters was repeated. A permutation distribution was
formed from the maximum summed t statistic on each iteration.
Summed t values from the original data set were considered significant
when they were more extreme than the middle 95% of the permutation
values in either direction (corresponds to a two-tailed # $ 0.05).

Eye movements. In light of recent observations that rhythmic motor
activity benefits auditory perception (Su and Pöppel, 2012; Manning and
Schutz, 2013; Morillon et al., 2014), we entertained the possibility that
fluctuations in either (1) delta-band activity or (2) gap-detection perfor-
mance might be related to the magnitude of eye movements before gap

onset. For both analyses, we made use of the horizontal and vertical EOG
channels, which we high-pass filtered (0.9 Hz, 1099 points, Kaiser win-
dow), low-pass filtered (40 Hz, 93 points, Blackman window; Bosman et
al., 2009), rereferenced to linked mastoids, and segmented into trials
ranging from – 0.5 to 0 s relative to gap onset. To compare to delta
activity, we made use of data from electrode Cz. We high-pass filtered
(0.9 Hz, 1099 points, Kaiser window), low-pass filtered (4 Hz, 701 points,
Blackman window), rereferenced, and segmented into single trials. We
only considered trials that had not been rejected for the analysis of the
neural data.

For the analysis of delta-band activity, we correlated delta phase and
the absolute magnitude of eye movements on a time point-by-time point
basis. At each time point, we binned single trials based on single-trial
delta phase (18 bins, 0.6$ width, identical to our analysis of neural data)
and averaged eye-movement magnitude within each bin. Then, we cal-
culated a circular–linear correlation between delta phase and eye-
movement magnitude. For the analysis of gap-detection performance,
we binned single trials based on single-trial absolute eye-movement mag-
nitude (separately for horizontal and vertical EOGs, 18 percentile bins,
30% width) and calculated a hit rate for each bin. Then, we calculated a
linear correlation between eye-movement magnitude and hit rate. For
both analyses, statistical testing and multiple-comparisons correction
was performed following the same procedure as described for the analysis
of cochlea-scaled entropy.

Effect size
Throughout this manuscript, effect sizes are reported as requivalent (no-
tated re throughout), which is equivalent to a Pearson product-moment
correlation for two continuous variables, and to a point-biserial correla-
tion for one continuous and one dichotomous variable (Rosenthal and
Rubin, 2003). The only exception is for circular Rayleigh tests, where we
report resultant vector length as the corresponding effect size measure
(notated r for circular and R for spherical tests).

Results
Listeners detected near-threshold gaps embedded in 14 s narrow-
band noise stimuli that did not possess rhythmic structure (Fig.
1a), in particular in the low frequencies in which neural phase has
previously been linked to performance (Henry and Obleser,
2012; Neuling et al., 2012; Ng et al., 2012; Henry et al., 2014). The
spectral content of the stimulus presented on each trial was
unique, and we confirmed that local spectral content did not
predict gap-detection performance. We probed for pre-gap neu-
ral microstates (i.e., combinations of phases in different fre-
quency bands) that were associated with good gap-detection
performance. Critically, we were interested in testing the possi-
bility that neural phase in different frequency bands (and in dif-
ferent numbers of frequency bands) at different times might
interact to determine auditory perception.

Behavioral performance
An adaptive-tracking procedure before the EEG experiment en-
sured that individually titrated gap durations resulted in detec-
tion performance near 50% (mean hit rate, 0.53 " 0.048 SEM).
Thus, the number of detected (hits) and undetected gaps (misses)
was approximately equal.

Low-frequency neural activity reflects a combination of
oscillatory and 1/f ! activity
Subtracting cross-power spectral density from autopower spec-
tral density yields an estimate of the degree to which oscillations
contribute to total power (Fig. 1b; Yamamoto and Hughson,
1991). Oscillatory strength was highest in the alpha band (at in-
dividually specific alpha frequencies), but oscillatory power was
greater than zero at all frequencies in the range between 3.40 and
10.75 Hz (pcluster $ 0.001; we tested between 0 and 15 Hz). Thus,

864 • J. Neurosci., January 20, 2016 • 36(3):860 – 871 Henry et al. • Neural Microstates Govern Auditory Perception



neural activity below 3.40 Hz likely has an arrhythmic (1/f !)
temporal structure.

We estimated power-law exponents, !, separately for the au-
topower and cross-power spectral density functions by fitting a
linear function to the data in log–log coordinates. We did this
separately for low (0.1– 8 Hz) and high (12–100 Hz) frequencies
(He et al., 2010); we chose to discontinue the power-law fits in the
alpha band because of pronounced peaks in this range that devi-
ated from the roughly straight-line function of the power spectra
plotted in log–log coordinates (Fig. 1b). Power-law exponents, !,
differed significantly between autopower and cross-power spec-
tral density for both low (t(10) $ –13.57, p # 0.001) and high
(t(10) $ –3.84, p $ 0.003) frequencies. Steeper slopes correspond
to a faster drop off of power as a function of frequency for the
cross-power spectral density function, and thus signify the poten-
tial presence of oscillatory contributions to total power.

Neural phase effects on gap-detection performance
The relationship between neural phase and gap-detection perfor-
mance was assessed by way of circular–linear correlations (Fig.
2a). Hit rates were calculated for each of 18 overlapping phase
bins into which single trials were sorted, and correlations were
then calculated between phase and hit rate. The statistical signif-
icance of z-scored circular–linear correlations was assessed for all
frequencies ranging between 1 and 15 Hz and for time points
preceding gaps by up to 500 ms at electrode Cz by means of
nonparametric cluster statistics (Maris and Oostenveld, 2007). A
significant relationship between hit rate and neural phase was
observed for four time–frequency clusters: (1) delta band (1–2.5
Hz, &0.50 to 0 s, re $ 0.91); (2) theta band (5– 6.5 Hz, &0.24 to
&0.20 s, re $ 0.74); (3) low-alpha band (8 –12 Hz, &0.23 to
&0.16 s, re $ 0.69); (4) high-alpha band (9 –15 Hz, &0.03 to 0 s,
re $ 0.88); cluster p values #0.05 (two-tailed). Figure 2a illus-
trates these four clusters.

To characterize in detail the nature of the effects in the signif-
icant time–frequency clusters, we estimated single-trial neural
phases in time windows approximately centered in time within
each cluster and chosen so that phase estimates were based on
10% of the cycle length in that frequency band (delta, 1–2.5 Hz,
&0.28 to &0.22 s; theta, 5– 6.5 Hz, &0.24 to &0.21 Hz; low alpha,
8 –12 Hz, &0.20 to &0.18 s; high alpha, 9 –15 Hz, &0.03 to &0.01
s). Phase values were averaged over frequency and time within a
cluster, and single-trial accuracy values were again sorted into 18
overlapping bins based on phase. Gap-detection hit rates are
plotted as a function of neural phase bin in Figure 2b (left). No-
tably, separate Rayleigh tests for each frequency band indicated
that optimal phase (i.e., neural phase in which hit rate was high-
est) was consistent across participants only for the delta band
(z $ 4.16, pFDR $ 0.048, r $ 0.65). This was in contrast to the
theta (z $ 0.49, pFDR $ 0.94, r $ 0.22), low-alpha (z $ 0.06,
pFDR $ 0.94, r $ 0.08), and high-alpha (z $ 1.89, pFDR $ 0.30, r $
0.44) frequency bands, where nonsignificant phase concentra-
tions indicated that optimal neural phase was inconsistent across
participants (Fig. 2b, middle; optimal neural phases were esti-
mated from cosine fits to behavioral data).

From a physiological standpoint, based on a model in which
neural phase reflects local cortical excitability, consistency of op-
timal neural phase across participants would be expected. How-
ever, it has become a conventional, albeit less stringent, method
of illustrating phase effects to perform a post hoc realignment of
behavioral data so that peak hit rates for each individual partici-
pant all coincide with the same arbitrary neural phase (Busch et
al., 2009; Neuling et al., 2012; Ng et al., 2012; Riecke et al., 2015).

Figure 2. a, Correlation between neural phase and hit rate. Z-scored circular–linear corre-
lations between binned gap-detection hit rates and neural phase for frequencies ranging be-
tween 1 and 15 Hz and for &0.5 to 0 s before gap, plotted for electrode Cz. Significant clusters
(outlined in black) were observed in the delta (1–2.5 Hz,&0.50 to 0 s), theta (5– 6.5 Hz,&0.24
to &0.20 s), low-alpha (8 –12 Hz, &0.23 to &0.16 s), and high-alpha (9 –15 Hz; &0.03 to 0 s)
frequency bands. b, Single-participant data in significant clusters. Left, Nonaligned, zero-
centered binned hit rates plotted as a function of neural phase in the significant delta (1–2.5
Hz), theta (5– 6.5 Hz), low-alpha (8 –12 Hz), and high-alpha (9 –15 Hz) clusters; single-
participant hit rates are shown in gray, and grand-average hit rates are overlaid in black. Middle,
Analysis of optimal neural phase (i.e., the neural phase in which hit rate was highest) in each
frequency band revealed that neural phase effects were only consistent across participants in
the delta frequency band (delta, pFDR $ 0.048; all other pFDR % 0.30). Right, Zero-centered
binned hit rates plotted as a function of neural phase. Single-participant data were realigned so
that maximum hit rates for each participant coincided (arbitrarily aligned with peak hit rate at
phase $ 0 rad); single-participant hit rates are shown in gray, and grand-average hit rates are
overlaid in black.
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Figure 2b (right) emulates this convention and plots gap-det-
ection hit rates as a function of neural phase with single-par-
ticipant data realigned so that peak hit rates coincide at phase $ 0
rad. Plotted this way, relative phase effects can be discerned in all
frequency bands under consideration here. However, we con-
sider it important that only the delta-band phase effect is present
without such single-participant data realignment and that best
delta phase is thus consistent across participants also in absolute
terms.

Delta phase determined higher-frequency phase effects
The previous analysis indicated that individual participants
showed modulation of hit rates by neural theta and alpha phase.
However, the specific neural phase that corresponded to best hit
rate (optimal phase) was inconsistent across participants in both
frequency bands. To further investigate this apparent inconsis-
tency, we investigated the possibility that behavioral performance
patterns were explainable by phase–phase interactions across fre-
quency bands. In particular, we expected that an analysis based
on delta phase would help clarify the theta- and alpha-dependent
results.

First, we separated the single-trial data into four bins based on
delta phase. Then, for each delta-phase bin, hit rates were calcu-
lated as a function of neural phase (based on sorted and binned
single trials) independently for the theta, low-alpha, and high-
alpha clusters (i.e., what we will refer to as first-order interac-
tions). We estimated optimal neural phase per participant based
on cosine fits to the hit rates, separately for theta, low-alpha, and
high-alpha frequency bands (in each delta phase bin) and tested
for consistency of optimal neural phase across participants using
Rayleigh tests.

Interestingly, for those trials in which delta phase ranged be-
tween $/4 and –3$/4 (encompassing 0 radian), we observed a
significant clustering of optimal high-alpha neural phases (yield-
ing best hit rates) across participants (z $ 5.10, pFDR $ 0.016, r $
0.68; Fig. 3). We did not observe such an emergence of a consis-
tent phase effect in the high-alpha frequency band for any of the
remaining three delta phase bins (pFDR % 0.28). Moreover, a
direct comparison revealed that high-alpha consistency (as in-
dexed by resultant vector length) was indeed significantly

stronger for the delta bin ranging between $/4 and –3$/4 (en-
compassing 0 radian) compared to the average over the remain-
ing delta bins (z $ 4.03, p # 0.001). Finally, splitting trials based
on delta phase did not improve the across-participant consis-
tency of the influence of neural phase on hit rate in either the
theta or low-alpha frequency bands (pFDR % 0.62).

Of note, we confirmed that delta amplitude did not differ be-
tween delta-phase bins when we took into account the full 0.5 s
before gap occurrence (p $ 0.93), or when we looked specifically in
the time windows of the significant clusters in the higher frequency
bands (theta, p $ 0.90; low alpha, p $ 0.94; high alpha, p $ 0.83).

Higher-order interactions between frequency bands
determine performance
We next tested whether, for each of the four individual delta bins,
gap-detection hit rates were predictable from a combination of
phases in the theta, low-alpha, and high-alpha clusters (based on
multidimensional binning of single trials; here referred to as
higher-order interactions). Using a spherical Rayleigh test, we
found that when delta phase ranged between 3$/4 and –$/4 (en-
compassing $), hit rates were highest for a specific combination of
theta and low-alpha phase that was marginally significantly clustered
across participants (z$3.94, pFDR $0.06, r$0.60; Fig. 4). This delta
phase bin was notably different from that for which we observed a
consistent optimal high-alpha phase. For the remaining delta phase
ranges, combinations of theta and low-alpha phase did not predict
hit rates consistently across participants (pFDR % 0.28). Moreover,
the consistency of the theta–low-alpha interaction in the delta bin
ranging between 3$/4 and –$/4 (encompassing $) was significantly
higher than the consistency of the theta–low-alpha phase effects av-
eraged over the other delta bins (z $ 3.62, p # 0.001). Finally, split-
ting the data based on delta phase did not reveal consistent
combinatorial effects of either theta and high alpha or low alpha and
high alpha (pFDR % 0.64).

Gap-detection performance depends on delta-governed
neural microstates
Figure 5a (insets) shows schematic characterizations of the dif-
ferent brain states leading to optimal gap-detection performance
based on extrapolating the time course of prototype narrow-

Figure 3. Delta phase mediated the influence of high-alpha phase on gap-detection hit rates. Hit rates (zero centered) are shown as a function of high-alpha (9 –15 Hz) neural phase, separately
for each of four delta phase bins (illustrated at bottom of figure). Single-participant data are shown in gray, and grand-average data are overlaid in black (thick lines). Circle plots show distributions
of optimal neural phases estimated from cosine fits with resultant vectors. High-alpha (9 –15 Hz) phase had a consistent influence on gap-detection hit rates only when delta (1–2.5 Hz) phase
ranged between $/4 and –3$/4 (encompassing 0; far right).
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band neural oscillations from each observed phase effect up to
gap onset. These schematized time courses are shown together
with single-participant and mean time courses of data identified
as belonging to each microstate and filtered as such. The sche-
matic microstates and time-domain data correspond well. For
each frequency band, extrapolation inaccuracy was small (delta,
0.04 " 0.03 radian, 95% confidence interval; theta, 0.08 " 0.68
rad; low alpha, – 0.47 " 1.01 rad; high alpha, 0.05 " 0.02 rad).
Notably, for each of these three schematic microstates, best gap-
detection performance occurred when gaps coincided with the
local near trough-to-rising phase of the complex neural signal.
For each microstate, we compared time courses of data preceding
detected (hits) versus undetected (misses) gaps and found that
these differed significantly in time ranges that corresponded to
our initial circular–linear correlation analysis reported in Figure
2 (Microstate A, pcluster # 0.001; Microstate B, pcluster & 0.003;
Microstate C, pcluster & 0.02). In particular, time courses were
more negative before gaps that were subsequently detected than
for gaps that were undetected. Topographies showing the
strength of clustering of optimal neural phase (i.e., Rayleigh z
values) revealed distinct spatial distributions of each microstate.

Time courses of microstate prevalence are shown in Figure 5b
for three representative participants. Frequency-domain repre-
sentations revealed slow fluctuations in the prevalence of individ-
ual microstates as well as gap-detection performance that had an
average rate of 0.003 Hz (!6 min) across participants (Fig. 5b,
bottom).

Control analyses
We analyzed the relationship between gap-detection hit rates and
stimulus acoustics to rule out the possibility that the dependence
of hit rates on distinct neural microstates was attributable to
variations in stimulus acoustics that drove both neural phase and
behavioral fluctuations (for a similar analysis, see Ng et al., 2012).
We did not observe a significant correlation between cochlea-
scaled entropy and gap-detection hit rates at any pre-gap time
point (pcluster % 0.07, two-tailed; Fig. 6a).

We also examined the relation between eye-movement mag-
nitude before gap onset and (1) delta phase as well as (2) gap-

detection hit rates in light of recent behavioral work indicating
that movement has a positive effect on auditory perception (Su
and Pöppel, 2012; Manning and Schutz, 2013; Morillon et al.,
2014). Horizontal EOG magnitude did not correlate significantly
with either delta phase (pcluster % 0.18, re & 0.42) or gap-
detection performance (pcluster $ 0.10, re & 0.50). Vertical EOG
magnitude was not correlated with delta phase (pcluster % 0.22, re

& 0.38). However, pre-gap vertical EOG magnitude was signifi-
cantly negatively correlated with gap-detection hit rates in a very
brief time window (&0.474 to &0.466 s) that did not overlap with
any of the neural phase effects (pcluster $ 0.004, re $ 0.76; Fig. 6b).
In contrast to observations of an auditory perception benefit as-
sociated with movement, gaps were more likely to be missed
when vertical EOG magnitude was large. This is potentially un-
surprising as the benefit of movement is specific to rhythmic
movements in time with rhythmic stimuli (for a similar result on
ERPs, see Schmidt-Kassow et al., 2013; Fautrelle et al., 2015).

Discussion
Gap-detection hit rates peaked in three delta-governed micro-
states that were characterized by (1) delta phase alone, (2) a com-
bination of delta and high-alpha phase, or (3) a combination of
delta, theta, and low-alpha phase. The results demonstrate that in
the absence of a regular stimulus rhythm to entrain neural activ-
ity, contingencies between brain states and behavior are charac-
terized by spectrotemporal complexity.

Delta-governed neural microstates determined gap-
detection performance
Gap detection depended on specific phase–phase combinations
across frequency bands—sometimes one, sometimes two, and
sometimes three frequency bands—that were relevant on differ-
ent trials. First, gap detection depended on arrhythmic delta-
band activity in the range of 1–2.5 Hz (a single-band effect).
Second, neural oscillatory phase in a high-alpha (9 –15 Hz) clus-
ter modulated gap detection, but optimal high-alpha phase was
only consistent across participants for a subset of data chosen
based on delta phase (a first-order interaction). Finally, gap de-
tection depended on a specific combination of oscillatory theta

Figure 4. Delta phase mediated the joint influence of theta and low-alpha phase on gap-detection hit rates. Hit rates are plotted on tori as a function of 5– 6.5 Hz theta phase (smaller, inside
circle) and 8 –12 Hz low-alpha phase (larger, outside circle), separately for each of four delta phase bins (illustrated at bottom of figure). Theta and low-alpha phase marginally significantly
comodulated hit rates only for trials on which delta phase ranged between 3$/4 and –$/4 (encompassing $), to an extent that was significantly greater than for all other delta bins. Circle plots
(top) are provided for visualization purposes and show the neural phase yielding the peak hit rate separately for the theta and alpha frequency bands. p values correspond to spherical Rayleigh tests
for theta and alpha phases considered together (FDR corrected).
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(5– 6.5 Hz) and low-alpha (8 –12 Hz) phase, but the optimal joint
theta–low-alpha phase was only consistent across participants for
a different subset of data again chosen based on delta phase (a
higher-order interaction). The specific delta phase ranges and
spatial topographies associated with peak performance were dif-
ferent for the three scenarios. Thus, auditory perception in the
absence of rhythmic stimulus structure was determined by the
presence of distinct delta-governed neural microstates character-
ized by combinations of arrhythmic (1/f !) and oscillatory
activity.

1/f ! structure is ubiquitous in natural time series including
brain activity, earth seismic activity, and financial markets (Kay-
ser and Ermentrout, 2010; He, 2014), although its functional
neural significance is a matter of ongoing research. Neurally, 1/f !

activity signifies the presence of long-range temporal correla-
tions, and as such reflects a “memory” for system dynamics
(Linkenkaer-Hansen et al., 2001), which is disrupted in Alzhei-
mer’s disease (Montez et al., 2009), schizophrenia (Nikulin et al.,
2012), and major depressive disorder (Linkenkaer-Hansen et al.,
2005). 1/f ! power has been demonstrated to correlate with pop-
ulation firing rate (Ray and Maunsell, 2011) and to show task

specificity (Palva et al., 2013). The current results indicate that
1/f ! activity interacts with neural oscillatory activity to play a
functional role in auditory perception.

Modeling work suggests that the phase of neural activity at
different time scales in the delta–theta–alpha frequency range
may play somewhat different roles in encoding sound. Electro-
physiological recordings from auditory cortex of anesthetized
rats indicate that multiunit activity is modulated by phase–phase
combinations in the 1–12 Hz range in the presence of auditory
stimulation and in silence (Kayser et al., 2015). Modeling indi-
cated that delta-band phase modulates background firing,
whereas higher-frequency phase simultaneously modulates re-
sponse gain. Thus, we hypothesize that our delta-governed neural
microstates may reflect simultaneous modulation of background
neuronal firing by delta phase and modulation of response gain at
faster (theta and alpha) time scales.

The current approach can be contrasted with previous re-
search in which lack of optimal neural phase consistency was
remedied by realigning data so that individual participants’ be-
havioral peaks coincided at an arbitrary phase (Busch et al., 2009;
Busch and VanRullen, 2010; Neuling et al., 2012; Ng et al., 2012;

Figure 5. Gap-detection performance was determined by distinct delta– governed neural microstates. a, When hit rates were determined by delta phase alone (Microstate A), by a combination
of delta and high-alpha phase (Microstate B), and by a combination of delta, theta, and low-alpha phase, gap-detection hit rates were relatively high when the local near trough-to-rising phase
(highlighted in blue, pink, and green, respectively) of the complex neural activity coincided with gap onset (insets). Single-participant (thin, colored lines) and mean (thick, black lines) time course
data corresponded well to the schematic microstates. Insets compare time courses preceding detected (hits, blue, pink, green) and undetected (misses, gray dashed lines) gaps. The time courses
differed significantly (marked by gray bars below time courses) in time ranges corresponding to our analysis based on circular–linear correlations (Fig. 2, marked by colored shaded bars), and polarity
was more negative preceding hits than misses. Topographies show the strength of consistency across participants in terms of optimal neural phase for gap-detection performance. b, Time courses
of microstate prevalence (shown here for three representative participants) revealed slow fluctuations in the prevalence of individual microstates as well as gap-detection performance that had an
average rate of 0.003 Hz across participants (bottom).
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Riecke et al., 2015; Fig. 2b). Notably, the majority of studies that
have failed to observe across-participant consistency in optimal
neural phase (Busch et al., 2009; Busch and VanRullen, 2010; Ng
et al., 2012) also used rhythmically unpredictable stimuli. In
contrast, in our own previous work using rhythmic stimuli, we
observed significant across-participant consistency in the distri-
bution of optimal neural phases in specific frequency bands cor-
responding to the stimulus rhythm (Henry and Obleser, 2012;
Henry et al., 2014). We suggest that in the absence of rhythmic
structure at a specific frequency, across-participant consistency
in the distribution of optimal neural phases may not be expected
in a single frequency band, but may only be apparent in subsets of
trials corresponding to distinct neural states.

We did not observe a consistent relationship between
gap-detection performance and pre-gap stimulus acoustics
(cochlea-scaled entropy; see also Ng et al., 2012). More generally,
converging evidence suggests that neural phase effects in auditory
perception cannot result simply from acoustic confounds. First,
we showed previously that neural phase is a better predictor of
performance than stimulus phase (Henry and Obleser, 2012).
Second, auditory target detection depends on the phase of neural
activity entrained by transcranial direct current stimulation in
the absence of an acoustic rhythm (Neuling et al., 2012). Finally,
we consider it unlikely that the complex pattern of neural phase
effects observed in the current study would be simply attributable
to acoustic fluctuations. In sum, auditory perception in the ab-
sence of low-frequency rhythmic structure depends on delta-
governed neural microstates that cannot be explained by acoustic
features of the stimulation.

Microstates in neural time and space
It is notable that neural complexity and neural microstates are
often defined in spatial terms (Lehmann et al., 1994; Kondakor et
al., 1997; Müller et al., 2005; Britz et al., 2009; Sporns, 2014).
Spatial complexity, considered crucial for cognitive function
(Tononi et al., 1994), is defined in terms of a balance between

unique patterns of activity within individual brain regions and
simultaneous communication between brain regions (Friston et
al., 1995; Tononi et al., 1998; Sporns et al., 2000). Empirically, the
degree of spatial network complexity measured before the occur-
rence of a near-threshold target predicts detection performance
for tactile stimulation (Weisz et al., 2014). Similarly, changes in
patterns of between-region connectivity predict the percept asso-
ciated with an ambiguous visual stimulus (Hipp et al., 2011).
Future work, integrating local dynamic spectrotemporal with
global spatiotemporal considerations of neural complexity and
neural microstates, will be necessary to mechanistically charac-
terize the neural preconditions for human perception, cognition,
and consciousness (Tononi and Edelman, 1998).

Neural microstates reveal complex neural dynamics in the
absence of rhythmic structure
The perspective adopted here is rooted in an approach to neuro-
science that sees the brain as a complex dynamic system. On this
view, nonlinearities are expected to arise in spatial, spectral, and
temporal aspects of neural processing because of the neurophys-
iological, pharmacological, and histological properties of the
brain and neural tissue (Freeman et al., 2001; Breakspear et al.,
2004). Here, spectrotemporal nonlinearities were revealed,
whereby the relation between neural phase and behavior, and the
number and identity of relevant frequency bands, changed over
time. We suggest that the presence of distinct neural microstates
associated with good gap-detection performance reflects flexible
reorganization of brain dynamics over time (Freeman et al.,
2001); that is, the neural states that were associated with good
performance at different times were characterized by interactions
between different numbers of frequency bands, suggesting
moment-to-moment variations in the dimensionality of the neu-
ral states or shifts between stable attractors in a high-dimensional
neural state space.

The facility to switch flexibly between neural state configura-
tions, to uncouple and recouple functional neural assemblies, is

Figure 6. a, Cochlea-scaled entropy was not significantly correlated with gap-detection hit rates ( y-axis shows z-transformed correlation coefficients as a function of pre-gap time); gray dots
show single-participant data, and black dots show mean data. b, Neither horizontal (left) nor vertical (right) EOG activity was correlated with delta phase. c, Horizontal EOG activity (left) was not
correlated with hit rate, but vertical EOG (middle) activity was negatively correlated with gap-detection hit rates in a brief time window that did not overlap with the neural phase effects (highlighted
gray). The right panel shows hit rates as a function of vertical EOG eye-movement magnitude (percentile, mean " SEM).
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critical to ensure that the neural system is capable of rapid adap-
tation to changing contexts (Breakspear et al., 2004). This is likely
especially true when sensory contexts are unpredictable, as when
stimuli lack rhythmic structure. We hypothesize that the associ-
ation of distinct microstates with good performance constitutes a
hallmark of a neural system operating in the absence of an orga-
nizing stimulus like an auditory rhythm that increases predict-
ability and reduces complexity of brain dynamics through
entrainment. We consider it important for future research to
characterize rhythm’s role in shaping neural dynamics and the
dimensionality thereof.

We propose that the special role of slow, arrhythmic delta
activity in determining the microstates is related to the overall
weakly stable nature of the neural system in the absence of rhyth-
mic structure (Friston, 2000; Breakspear, 2004). Flexible state
reorganizations would not be adaptive on a very fast time scale.
Thus, we speculate that such state transitions could be reflected in
slow delta-band neural activity, leading to the observation of
what we have termed delta-governed microstates. Interestingly,
this hypothesis and indeed the current data can be contrasted
with the idea that in the absence of rhythmic structure to entrain
low-frequency neural activity, the importance of the delta band
should be minimized, mainly by suppression of delta-band activ-
ity altogether (Schroeder and Lakatos, 2009). Our data to not
provide evidence for such a suppression and, together with evi-
dence of the importance of delta-band activity in silence (Kayser
et al., 2015), emphasize the sustained influence of delta phase on
performance in so-called “continuous-mode processing.”

Conclusions
The present EEG study presents a novel analysis approach that
considers higher-order contingencies between frequency bands
to explain behavior. The results demonstrate that the phase of
neural activity affects target-detection performance in the ab-
sence of low-frequency rhythmic structure (during continuous-
mode processing). Gap detection was best, and optimal neural
phase was consistent across participants, in three distinct, delta-
governed neural microstates in which the number and identity of
frequency band(s) relevant for predicting performance varied
over time. The results suggest that in the absence of predictability
afforded by rhythmic stimulus structure, optimal detection per-
formance hinges on moment-to-moment variations neural state
organization.
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870 • J. Neurosci., January 20, 2016 • 36(3):860 – 871 Henry et al. • Neural Microstates Govern Auditory Perception

http://dx.doi.org/10.1162/neco.1995.7.6.1129
http://www.ncbi.nlm.nih.gov/pubmed/7584893
http://dx.doi.org/10.1214/aos/1013699998
http://dx.doi.org/10.1523/JNEUROSCI.1193-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19641110
http://dx.doi.org/10.1385/NI:2:2:205
http://www.ncbi.nlm.nih.gov/pubmed/15319517
http://www.ncbi.nlm.nih.gov/pubmed/14707544
http://dx.doi.org/10.1093/cercor/bhn056
http://www.ncbi.nlm.nih.gov/pubmed/18424780
http://www.ncbi.nlm.nih.gov/pubmed/20805482
http://dx.doi.org/10.1523/JNEUROSCI.0113-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19535598
http://www.ncbi.nlm.nih.gov/pubmed/15218136
http://dx.doi.org/10.1371/journal.pone.0119187
http://www.ncbi.nlm.nih.gov/pubmed/25806813
http://dx.doi.org/10.1016/S0303-2647(00)00146-5
http://www.ncbi.nlm.nih.gov/pubmed/11267739
http://dx.doi.org/10.1098/rstb.2000.0561
http://dx.doi.org/10.1002/hbm.460030405
http://dx.doi.org/10.1016/j.tics.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24788139
http://dx.doi.org/10.1016/j.neuron.2010.04.020
http://www.ncbi.nlm.nih.gov/pubmed/20471349
http://dx.doi.org/10.1523/JNEUROSCI.4456-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23223276
http://dx.doi.org/10.1163/22134468-00002011
http://dx.doi.org/10.1073/pnas.1213390109
http://www.ncbi.nlm.nih.gov/pubmed/23151506
http://dx.doi.org/10.1073/pnas.1408741111
http://www.ncbi.nlm.nih.gov/pubmed/25267634
http://dx.doi.org/10.1016/j.neuron.2010.12.027
http://www.ncbi.nlm.nih.gov/pubmed/21262474
http://dx.doi.org/10.1111/1467-9280.00458
http://www.ncbi.nlm.nih.gov/pubmed/12137133
http://www.ncbi.nlm.nih.gov/pubmed/20471345
http://dx.doi.org/10.1523/JNEUROSCI.0268-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/25995464
http://dx.doi.org/10.1007/BF01273178
http://www.ncbi.nlm.nih.gov/pubmed/9203079
http://dx.doi.org/10.1152/jn.00263.2005
http://www.ncbi.nlm.nih.gov/pubmed/15901760
http://dx.doi.org/10.1016/j.neuron.2012.11.034
http://www.ncbi.nlm.nih.gov/pubmed/23439126
http://dx.doi.org/10.1121/1.4879667
http://dx.doi.org/10.3109/00207459408987242
http://www.ncbi.nlm.nih.gov/pubmed/7928108
http://www.ncbi.nlm.nih.gov/pubmed/11160408


könen S (2005) Breakdown of long-range temporal correlations in theta
oscillations in patients with major depressive disorder. J Neurosci 25:
10131–10137. CrossRef Medline

Makeig, S, Bell, AJ, Jung, TP and Sejnowski, TJ (1996) Independent compo-
nent analysis of electroencephalographic data. (Touretzky D, Mozer M,
Hasselmo M, eds). Cambridge, MA: MIT.

Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, frac-
tional noises, and applications. SIAM Rev 10:422– 437. CrossRef

Manning F, Schutz M (2013) “Moving to the beat” improves timing percep-
tion. Psychon Bull Rev 20:1133–1139. CrossRef Medline

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and
MEG-data. J Neurosci Methods 164:177–190. CrossRef Medline

McAuley JD, Jones MR (2003) Modeling effects of rhythmic context on
perceived duration: a comparison of interval and entrainment ap-
proaches to short-interval timing. J Exp Psychol Hum Percept Perform
29:1102–1125. CrossRef Medline

Montez T, Poil SS, Jones BF, Manshanden I, Verbunt JP, van Dijk BW, Brus-
saard AB, van Ooyen A, Stam CJ, Scheltens P, Linkenkaer-Hansen K
(2009) Altered temporal correlations in parietal alpha and prefrontal
theta oscillations in early-stage alzheimer’s disease. Proc Natl Acad Sci
U S A 106:1614 –1619. CrossRef Medline

Moore BC, Glasberg BR (1983) Suggested formulae for calculating
auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:
750 –753. CrossRef Medline

Moore BC, Peters RW, Glasberg BR (1990) Auditory filter shapes at low
center frequencies. J Acoust Soc Am 88:132–140. CrossRef Medline

Morillon B, Schroeder CE, Wyart V (2014) Motor contributions to the tem-
poral precision of auditory attention. Nat Commun 5:5255. CrossRef
Medline

Müller TJ, Koenig T, Wackermann J, Kalus P, Fallgatter A, Strik W, Lehmann
D (2005) Subsecond changes of global brain state in illusory multistable
motion perception. J Neural Transm 112:565–576. CrossRef Medline

Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS (2012) Good
vibrations: Oscillatory phase shapes perception. Neuroimage 63:771–778.
CrossRef Medline

Ng BS, Schroeder T, Kayser C (2012) A precluding but not ensuring role of
entrained low-frequency oscillations for auditory perception. J Neurosci
32:12268 –12276. CrossRef Medline

Nikulin VV, Jönsson EG, Brismar T (2012) Attentuation of long-range tem-
poral correlations in the amplitude dynamics of alpha and beta neuronal
oscillations in patients with schizophrenia. Neuroimage 61:162–169.
CrossRef Medline

Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysi-
ological data. Lect Notes Comput Sci 2011:1–9. CrossRef

Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva
S (2013) Neuronal long-range temporal correlations and avalance dy-
namics are correlated with behavioral scaling laws. Proc Natl Acad Sci
U S A 110:3585–3590. CrossRef Medline

Patel AD (2008) Music, language, and the brain. New York: Oxford UP.
Patterson RD, Nimmo-Smith I, Weber DL, Milroy R (1982) The deteriora-

tion of hearing with age: Frequency selectivity, the critical ration, the
audiogram, and speech threshold. J Acoust Soc Am 72:1788 –1803.
CrossRef Medline

Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol 9:e1000610. CrossRef
Medline

Riecke L, Formisano E, Herrmann CS, Sack AT (2015) 4-Hz transcranial
alternating current stimulation phase modulates hearing. Brain Stimul
8:777–783. CrossRef Medline

Rohenkohl G, Cravo AM, Wyart V, Nobre AC (2012) Temporal expectation
improves the quality of sensory processing. J Neurosci 32:8424 – 8428.
CrossRef Medline

Rosenthal R, Rubin DB (2003) R(equivalent): a simple effect size indicator.
Psychol Methods 8:492– 496. CrossRef Medline

Schmidt-Kassow M, Heinemann LV, Abel C, Kaiser J (2013) Auditory-
motor synchronization facilitates attention allocation. Neuroimage 82:
101–106. CrossRef Medline

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as in-
struments of sensory selection. Trends Neurosci 32:9 –18. CrossRef
Medline

Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P (2010) Dy-
namics of active sensing and perceptual selection. Curr Opin Neurobiol
20:172–176. CrossRef Medline

Singer W (2013) Cortical dynamics revisited. Trends Cogn Sci 17:616 – 626.
CrossRef Medline

Sporns O (2014) Contributions and challenges for network models in cog-
nitive neuroscience. Nat Neurosci 17:652– 660. CrossRef Medline

Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity:
The relationship between neuroanatomy and brain dynamics. Neural
Netw 13:909 –922. CrossRef Medline

Stilp CE, Kluender KR (2010) Cochlea-scaled entropy, not consonants,
vowels, or time, best predicts speech intelligibility. Proc Natl Acad Sci
U S A 107:12387–12392. CrossRef Medline
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