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Alignment of neural oscillationswith temporally regular input allows listeners to generate temporal expectations.
However, it remains unclear how behavior is governed in the context of temporal variability: What role do tem-
poral expectations play, and how do they interact with the strength of neural oscillatory activity? Here, human
participants detected near-threshold targets in temporally variable acoustic sequences. Temporal expectation
strength was estimated using an oscillator model and pre-target neural amplitudes in auditory cortex were ex-
tracted frommagnetoencephalography signals. Temporal expectationsmodulated target-detection performance,
however, only when neural delta-band amplitudes were large. Thus, slow neural oscillations act to gate influ-
ences of temporal expectation onperception. Furthermore, slowamplitudefluctuations governed linear and qua-
dratic influences of auditory alpha-band activity on performance. By fusing amodel of temporal expectationwith
neural oscillatory dynamics, the current findings show that human perception in temporally variable contexts
relies on complex interactions between multiple neural frequency bands.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Low-frequency neural oscillations are periodic voltage or field varia-
tions of neural populations, and reflectfluctuations in neural excitability
(Bishop, 1933; Kayser et al., 2015; Lakatos et al., 2005). Consistent with
these cyclic excitability fluctuations, the probability of detecting near-
threshold sensory events has been shown to depend on the neural
phase into which an event falls (Busch et al., 2009; Busch and
VanRullen, 2010; Hanslmayr et al., 2013; Henry and Obleser, 2012;
Monto et al., 2008; Ng et al., 2012). For sensory input characterized by
temporal regularity, low-frequency neural oscillations synchronize
with the pattern of event onsets occurring over time through adjust-
ments of the oscillation's phase and period (i.e., neural entrainment).
Neural entrainment brings high-excitable phases into alignment with
attended or high-energy portions of the input (Lakatos et al., 2008,
2013; Thut et al., 2011), and is thereby proposed to organize the
phase–behavior relation (Henry et al., 2014; Neuling et al., 2012).

Variations in the strength of low-frequency neural oscillations
(i.e., amplitude envelope fluctuations) relate to the overall strength of
neural excitability fluctuations: High amplitudes correspond to more

drastic fluctuations in excitability than low amplitudes (Fig. 1, Jensen
and Mazaheri, 2010). Furthermore, for measurements made at the
scalp, neural amplitude is also a reflection of the number of neurons
whose excitability fluctuations are temporally synchronized (Musall
et al., 2014). In turn, the degree of synchrony among neuronal popula-
tions relates to the degree of neural entrainment and thus depends on
the degree of temporal regularity in the environmental stimulus
(Schroeder and Lakatos, 2009b; Thut et al., 2011).

Temporal regularity in the sensory input gives rise to temporal
expectations, meaning that the time of occurrence of an upcoming
sensory event can be expected. Conceptually, a sequence's temporal
regularity is linked to temporal expectations via oscillatory dynamics
(Arnal and Giraud, 2012; Henry and Herrmann, 2014; Schroeder
and Lakatos, 2009b). That is, a listener needs an internal model
on the basis of which external events can be judged as temporally
(un)expected (Jones and Boltz, 1989; McAuley and Jones, 2003).
This internal model can be conceptualized as a simple oscillator ca-
pable of synchronizing with a stimulus sequence (Canavier, 2015;
Large and Jones, 1999). Specifically, the phase of an oscillation syn-
chronized with the external event structure quantifies the timing
of an expected event, that is, a temporal expectation (Henry
and Herrmann, 2014). In turn, when a stimulus event fails to coin-
cide with the expected event onset, the temporal expectation is vio-
lated. Phase can be estimated from measured neural oscillatory
activity (Henry et al., 2014; Schroeder and Lakatos, 2009b), which
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emphasizes the relation to neural excitability. However, phase can
also be estimated from the external event structure using a mathe-
matical oscillator model (Large and Jones, 1999; McAuley and
Jones, 2003), which emphasizes the relation to temporal expecta-
tions, and avoids the possibility of poor neural phase estimation for
low neural amplitude values (Muthukumaraswamy and Singh,
2011). That is, modeled phase and neural amplitude are estimated
independently.

Previous studies investigating the effects of temporal expectations
on neural and behavioral responses have reported enhanced perceptual
performance in temporally regular compared to irregular stimulation
sequences (Cravo et al., 2013; Lange, 2009; Lawrance et al., 2014;
Rohenkohl et al., 2012). However, single events in temporally irregular
sequences can still be temporally expected to varying degrees based on
the local temporal structure (Jones and Yee, 1997). Furthermore, tem-
poral expectations might also be important for perception of natural
stimuli such as speech or music (Giraud and Poeppel, 2012; Peelle and
Davis, 2013). However, speech and music are not strictly periodic and
thus continuously modulate (1) the degree to which low-frequency os-
cillations are entrained, (2) the strength with which neural excitability
fluctuates, and (3) the extent to which temporal expectations can be
generated.

In the current magnetoencephalography (MEG) study, we used
temporally variable tone sequences to investigate four thus far unan-
swered questions: (1) Is perceptual performance affected by temporal
expectations in stimulus sequences with temporal variation? (2) Do
performance effects stemming from variations in the strength of
temporal expectations depend on low-frequency neural amplitude
(i.e., strength of excitability fluctuations and/or synchrony of neural
populations)? (3) Previous studies also reported that amplitude fluctu-
ations, for example, in alpha and beta frequency bands affect perception
in temporal context (Arnal et al., 2015; Fujioka et al., 2012; Rohenkohl
and Nobre, 2011; Saleh et al., 2010). Thus, we asked: Does perceptual
performance in temporally variable tone sequences also depend on neu-
ral amplitude variations in non-entrained frequency bands? (4) Finally,
recent work has shown complex effects of cross-frequency relations on
perceptual performance for phase–phase interactions (Fiebelkorn et al.,
2013; Henry et al., 2014) and phase–amplitude coupling (Arnal et al.,
2015; Friese et al., 2013). Here we focused on neural amplitude, and
asked: Do neural amplitude fluctuations in multiple frequency bands
jointly influence performance?

The data revealed a joint influence of temporal expectations and
low-frequency neural amplitude variations as well as interactive influ-
ences of neural amplitudes in multiple frequency bands on perceptual
performance.

Methods and materials

Participants

Twenty adult humans participated in the current MEG study (mean
age: 26.2 years, SD: 2.9 years; 10 females). Participants were native
speakers of German and were financially compensated for their partic-
ipation (7 Euros per hour). They did not report any neurological
diseases or any hearing problems, and gave written informed consent
prior to the experiment. The study was in accordance with the Declara-
tion of Helsinki and approved by the local ethics committee of the
University of Leipzig.

Acoustic stimulation and procedure

During the MEG recording, participants were presented with tone
sequences containing intensity deviants (target tones; Fig. 2). Non-
target tones in the experiment were presented at 50 dB above the indi-
vidual hearing threshold (i.e., sensation level), which was determined
prior to theMEG experiment using themethod of limits. Sound intensi-
ty of target tones was slightly louder and titrated individually for each
participant prior to the experiment to yield on average 65% detection
rate (mean target–to–non-target intensity difference: +2.44 dB ±
0.29 SD; titration was done using similar tone sequences as for the
MEG experiment). Note that in the current design, 65% detection rate
is far above chance level due to the continuous nature of the sequence.

Tone sequences consisted of 25 1000-Hz sine tones, each 100 ms in
duration (5 ms linear rise and fall times). Each sequence contained 2, 3,
or 4 target tones at random locationswithin a sequence andparticipants
were instructed to press a button when they heard a tone that was
louder than the others. Responses were considered hits when they
occurred within 0.2–1.2 s after target onset. Randomization of target
occurrence was constrained such that the first three and the last two
tones could never be a target. Furthermore, there were at least three
non-target tones between two consecutive targets.

Stimulation frequency was on average 2 Hz (±0.14 Hz SD),
while the exact onset-to-onset intervals were randomly jittered. That
is, within each sequence, tones occurred on average every 500 ms, but

Fig. 1. Neural excitability and predicted behavior. Schematic display of neural excitability
fluctuations, the corresponding amplitude envelope changes, and predicted perceptual
performance for high and low neural amplitudes as a function of phase/temporal expecta-
tion (which was estimated from the oscillator model exemplified in Fig. 2).

Fig. 2. Experimental stimulation. (A) An example segment of a tone sequence and
modeled oscillator dynamics (Large and Jones, 1999). The distance between the peak of
themodeled oscillation and the target onset indicates the degree to which a target is tem-
porally expected and is referred to as relative phase (φ). Synchronization strength reflects
the degree to which the oscillator is entrained by the stimulation. (B) Distribution of
onset-to-onset intervals presented to one participant.
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individual tone onsets were jittered within a range of ±55 ms. As a re-
sult, onset-to-onset intervals ranged from minimally 390 ms (when a
late tone was followed by an early tone) to maximally 610 ms (when
an early tone was followed by a late tone; Fig. 2B). Temporally jittered
stimulus presentation still entrains neural oscillations in auditory cortex
but leads to more variable neural phase distributions compared to iso-
chronous stimulation (Besle et al., 2011). Critically, the onset-to-onset
interval directly before and directly after each target tone was fixed at
500 ms in order to avoid perceptual foreperiod or masking (forward
and backward) effects (see Cravo et al., 2013). Furthermore, target posi-
tions were fixed at multiples of the average stimulation interval (0.5 s).
Hence, whether or not a target is detected cannot be related to tracking
multiples of the stimulation interval (or an average tracking strategy).

Individual sequences, lasting approximately 12.5 s each, were sepa-
rated by a silent inter-trial interval lasting 2.667 s. In six blocks, partici-
pants listened to a total of 216 sequences (36 per block) and were
presented with 648 target tones. The experiment lasted approximately
150 min including preparation of the MEG recordings.

Behavioral data: model-based estimation of temporal expectation

In the current study, each tone sequence exhibited some temporal
variability. The temporal context leading up to a target tone thus varied,
although the onset-to-onset interval directly prior to and directly after a
target was held constant at precisely 0.5 s and targets occurred at mul-
tiples of the average stimulation interval (0.5 s; 2 Hz).We hypothesized
that an intensity deviant would be more likely to be detected when it
occurred at a time that was predictable given the preceding temporal
context, relative to when it occurred at an unexpected time.

We formalized this prediction based on the mathematical oscillator
model described by Large and Jones (1999), whichwas used to estimate
the relative phase (φ) of an oscillation with respect to each tone in each
individual sequence heard by a participant, independent of MEG data
(Fig. 2A). The modeled oscillator phase (φ, bound between −0.5 and
0.5) provides a measure of the difference between the expected onset
time of a tone and the actual tone onset, that is, the degree to which a
tone onset is (un)expected. Specifically, modeled phase values close to
zero indicate good correspondence between the actual (physical) tone
onset and its expected onset, while larger-magnitude values indicate
that the tone onset would have been relatively unexpected (negative
relative phase indicates that the target was early; positive relative
phase indicates that the target was late; Fig. 2A). For details on the
mathematical implementation of the oscillator model see Large and
Jones (1999).

Modeled phase values for tone onsets within each sequence were
calculated as follows.Model parameters were chosen so that the oscilla-
tor most strongly adjusted its phase in response to tone onsets, and
adjusted its period to a lesser degree (coupling strength 1 and 0.3, re-
spectively; Inden et al., 2012; Large and Jones, 1999; synchronization
strength could be ignored for the current analyses). For each sequence,
the oscillator's initial period was set to 0.5 s (2 Hz; the average stimula-
tion rate), and the oscillator's initial phase (relative to the first tone
onset in a sequence) was chosen randomly to take on one value within
a half cycle centered on zero phase lag. All random initial phase values
allowed quick entrainment of the oscillator by tones within a sequence,
in line with recent simulations and recordings of neural oscillations
(Ali et al., 2013; Fröhlich and McCormick, 2010). Subsequently, the
modeled phase values (φ) for single-trial target tones were divided
into 15 overlapping percentile bins (width: 30%; for a similar approach
see Cravo et al., 2013) and the proportion of correct responses (hit rate)
was calculated for each bin (Fig. 3).

In order to account for the random selection of the oscillator's initial
phase values (relative to the first tone in a sequence), estimation of
modeled phase values (φ) for each tone in each sequence, dividing
phase values for target tones into 15 bins, and calculation of hit rates

was repeated 500 times. In a final step, hit rates for each of the 15 bins
were averaged across repetitions.

Behavioral data: statistical analysis

Although themodeled oscillator phase is a circular variable, we here
treat phase values linearly for two reasons: (1) modeled phase values
reflect the relative phase between the peak of the oscillation and the
physical tone onset, and thus reflect a distance measure with a mean-
ingful center (i.e., target onset and peak of the oscillation coincided);
and (2) modeled phase values (before binning) were well within the
limits of one cycle (i.e., greater than −0.5 and smaller than 0.5) due
to the specific jitter used in the current study (±55 ms). Thus, for the
statistical analysis, a quadratic trend analysis was carried out in order
to test whether hit rate was highest when the physical target onset co-
incidedwith the peak phase of the oscillation (expected onset), relative
to when the target occurred too early (negative phase) or too late
(positive phase). That is, for each participant, a quadratic function was
fitted to hit rates as a function of binned modeled oscillator phase
(i.e., temporal expectations; Fig. 3B) using a least-squares routine. To
test for a quadratic modulation of target-detection performance, the es-
timated quadratic coefficients were subsequently tested against zero
using a one-sample t-test. Throughout the manuscript, effect sizes are
reported as requivalent (Rosenthal and Rubin, 2003; hereafter referred to
simply as r), which is equivalent to a Pearson product–moment correla-
tion for two continuous variables, to a point–biserial correlation for one
continuous and one dichotomous variable, and to the square root of
partial η2 (eta-squared) for ANOVAs.

MEG recording and preprocessing

Participants' magnetoencephalograms were recorded in an electro-
magnetically shielded room (Vacuumschmelze, Hanau, Germany)

Fig. 3. Behavioral results. (A) Binning of single-trial modeled oscillator phase values for
one example participant. Left: modeled phase for each target trial. Right: phase values
sorted into 15 phase percentile bins (pctl). Note that here the overall number of trials is
larger than in the left panel due to overlap of the bins. (B) Hit rate as a function of oscillator
phase percentile bin and the corresponding quadratic fit for the same participant depicted
in (A). (C) Mean hit rates (across participants; mean-centered) for each oscillator phase
percentile bin. Error bars reflect the standard error of the mean (SEM).
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using a 306-channel Neuromag Vectorview MEG (Elekta, Helsinki,
Finland) at a sampling rate of 1000 Hz, with a passband ranging from
DC to 330 Hz. The position of the participant's head was continuously
measured by five head position indicator coils (mean movement per
block: 3 mm). The signal space separation method was applied offline
in order to suppress external interferences, interpolate bad channels,
and transform individual data to a common sensor space that allows
comparisons across participants (Taulu et al., 2004). Data analysis was
carried out using custom MATLAB (v7.11; MathWorks, Inc.) scripts. In
the current study, only the 204 orthogonal planar gradiometers in 102
locations were used, as they are most sensitive to magnetic fields origi-
nating from sources directly below them (Hämäläinen et al., 1993).

In order to identify artifacts such as eye movements, heart activity
and noisy channels, preprocessing was first geared towards computing
independent components analysis (ICA) using Fieldtrip software
(http://fieldtrip.fcdonders.nl/; v20130727; Oostenveld et al., 2011).
Preprocessing included high-pass filtering (0.7 Hz, 2391 points, Hann
window) and low-pass filtering (100 Hz, 151 points, Kaiser window),
down-sampling to 250 Hz, dividing recordings into epochs (−4 to 4 s
around target onset), and submitting the data to ICA (principle compo-
nent dimension reduction; runica method Makeig et al., 1996; logistic
infomax algorithm Bell and Sejnowski, 1995). Components reflecting
artifacts were identified (by visual inspection) as well as components
showing clear occipital/posterior activity and a peak in the amplitude
spectrum in the alpha frequency range (8–13 Hz). Identification and
subsequent removal (see below) of alpha components were done in
order to avoid rejecting a large number of trials in the signal-range
artifact rejection procedure following ICA and to optimize the current
analysis approach towards oscillatory activity in auditory cortex. The
“unmixing” matrix and the “mixing” matrix from ICA as well as the to-
be-removed component numbers were saved (median removed com-
ponents [interquartile range]: 14 [6]).

High-pass filtered data are advantageous for identification of ICA
components. However, for our analyses wewanted to avoid “smearing”
of variations in target-related activity into the pre-target time window
by using a high-pass filter. Thus, we went back to the original data, re-
peating the previous steps except that high-pass filtering was omitted.
In detail, data were low-pass filtered (100 Hz, 151 points, Kaiser win-
dow; note that the low-pass filter is very short and thus post-target

onset activity does not affect pre-target activity), down-sampled
to 250 Hz, divided into epochs (−4 to 4 s around target onset), and
detrended using linear regression. Data were subsequently projected
to ICA space (using the unmixing matrix), and after removal of the pre-
viously identified components projected back to the original 204 MEG
channels (using the mixing matrix from the previously described pipe-
line). Finally, epochs were excluded if the signal range was larger than
300 pT/m in any of the gradiometer channels (median excluded trials
[interquartile range]: 5 [6]). Only data from this preprocessing pipeline
were used for further analyses.

MEG data analysis: spatial filtering and source localization

In order to reduce the high-dimensional MEG data and to focus our
analysis on auditory cortex neural activity, a spatial filter was construct-
ed for each participant (for comparable approaches see de Cheveigné
and Simon, 2008; Garrido et al., 2013). In detail, for each MEG channel,
time domain signals (−4 to 4 s epochs) were averaged across all trials,
multiplied with a Hannwindow, and a fast Fourier transform (FFT) was
calculated (see Fig. 4 for the corresponding amplitude spectrum). The
resulting complex coefficients at 2-Hz (i.e., the average stimulation fre-
quency) were used to calculate a cross-spectral density matrix. A singu-
lar value decomposition was then computed using the cross-spectral
density matrix, and the real part of the first eigenvector's elements
were used as spatial filter weights. Finally, single-trial time-domain
data were projected onto the virtual source using the spatial filter.

Note that similar to other spatial filter approaches such as ICA
(Makeig et al., 1996), beamformer (Gross et al., 2001), or signal-space
projection (Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997), the cur-
rent spatial filter suppresses neural activity unrelated to the target
source. The specific assumptions on which the construction of the filter
is based differ between approaches, but here are constrained by the
neural activity at the average stimulation frequency of 2 Hz.

In order to confirm that the sources underlying the spatial filter
originate in auditory cortices, an anatomically constrained source local-
ization was calculated for the spatial filter. Individual T1-weighted
MR images (3 T Magnetom Trio, Siemens AG, Germany) were used to
construct inner skull surfaces (volume conductor) andmid-graymatter
cortical surfaces (source model; using Freesurfer and MNE software).

Fig. 4. Brain signals in sensor space, source space, and for the virtual source after spatial filtering. Left: mean evoked amplitude spectrum (averaged across channels) from a fast Fourier
transform (FFT) calculated from trial-averaged time series. Spatial filter calculated from the 2-Hz complex coefficients of the spectrum. Middle: source localization of the spatial filter to-
pography using sLORETA. Right: data projected through the spatial filter to the auditory cortex virtual channel. Top: trial-averaged (evoked;−2.5 to 2.5 s) time series for hits (blue) and
misses (red). Shaded portions reflect the SEM. Target onset ismarked by the crossing of the dashed lines. For visual purposes, a high-passfilter of 0.2 Hzwas applied to the time series. The
asterisk indicates a significant (P b 0.05) amplitude difference between hits andmisses for the 0.16 to 0.36 s time interval. Bottom: amplitude spectrum (total) calculated from single-trial
time series using a FFT, and subsequent averaging across trials. a.u. — arbitrary units.

490 B. Herrmann et al. / NeuroImage 124 (2016) 487–497

http://fieldtrip.fcdonders.nl/


The MR and the MEG coordinate systems were co-registered using the
MNE software (http://www.martinos.org/mne/) which included an au-
tomated and iterative procedure that fitted the approximately 200 dig-
itized head surface points (Polhemus FASTRAK 3D digitizer) to the MR
reconstructed head surface (Besl and McKay, 1992). Lead fields were
calculated from a boundary element model (inner skull; Nolte, 2003)
using MNE software and Fieldtrip software, and inverse solutions
were calculated using sLORETA (Pascual-Marqui, 2002) using custom
MATLAB scripts. Differences in overall brain activation strength be-
tween participants were reduced by global mean normalization,
which involved dividing the activation at each vertex by themean activ-
ity across all vertices. Neural activity was spatially smoothed across the
surface using an approximation to a 6mmFWHMGaussian kernel (Han
et al., 2006). Individual cortical representations were transformed to a
common coordinate system (Fischl et al., 1999b), and finally morphed
to the partially inflated cortical surface of the Freesurfer standard
brain (Fischl et al., 1999a).

MEG data analysis: pre-target oscillatory neural activity

All analyses of neural responses were conducted using the spatially
filtered single-trial signals and focused on pre-target oscillatory ampli-
tude fluctuations. Neural phase was not investigated in the current
study. The arbitrariness of the sign of spatially filtered time domain sig-
nals (between participants) related to the singular value decomposition
during filter construction could potentially harm an analysis of neural
phase across participants.

In order to analyze pre-target neural oscillatory activity we first re-
moved all target-related evoked responses from the single-trial time
domain data. To this end, the time-domain signal following target
onset was muted by multiplying it with half of a Hann window that
ranged from 0 to 0.05 s, and was zero thereafter (for a similar approach
seeHenry et al., 2014; Lakatos et al., 2013). Thiswas done in order to ex-
clude temporal “smearing” of potential variations in evoked responses
to target tones into the pre-target time interval by thewavelet convolu-
tion. A Hannwindowwas chosen due to its wide application in spectral
analyses and filter designs (Nitschke et al., 1998; Wallisch et al., 2009).
As a consequence, any relation between pre-target neural activity and
behavioral performance (see below) cannot be due to temporal
smearing of post-target onset variations of neural activity (Henry
et al., 2014; Lakatos et al., 2013; O'Connel et al., 2014). Furthermore,
subsequent analyses of neural amplitude were based on percentiles
and thus were insensitive to the overall magnitude of neural responses
(see below), andwere thus unaffected by any amplitude dampening in-
troduced by this procedure.

Next, time–frequency representations were calculated using a
wavelet approach, where single-trial time series (−4 to 4 s) were con-
volved with Morlet wavelets (Tallon-Baudry et al., 1996). Single-trial
time–frequency representations were calculated for the −0.3 to 0 s
pre-target time interval (in steps of 0.004 s) and the 1–20-Hz frequen-
cies (in steps of 0.2 Hz) using a wavelet family with a constant ratio of
f/σf = 6.28 (Tallon-Baudry et al., 1996). Single-trial time–frequency
neural amplitudes were calculated as the magnitude of the resulting
complex wavelet transform coefficients, which in turn were used for
subsequent analyses.

MEG data analysis: low-frequency neural oscillations and temporal
expectations

In a first analysis, we focused on 2-Hz neural activity within a time
window of a few samples directly prior to target onset. That is, indepen-
dently for each time point within the 0.03 s prior to target onset, single
trials were sorted into a 15 × 15 grid of overlapping percentile bins
(width: 30%) according to the instantaneous value of the 2-Hz neural
amplitude envelope (average stimulation rate) and themodeled oscilla-
tor phase (φ was estimated similarly to the behavioral analysis).

Dividing single-trial amplitudes into percentile bins allowed us to inves-
tigate relative amplitude changes while ignoring overall absolute mag-
nitude differences across time points and participants (Ai and Ro,
2014; Cravo et al., 2013; Linkenkaer-Hansen et al., 2004). Overlapping
bins were chosen to reduce noise in our data analysis (Cravo et al.,
2013; Fiebelkorn et al., 2013; Henry et al., 2014). For each bin of the
15× 15 grid, the proportion of correct responses (hit rate) was calculat-
ed, and subsequently averaged over the 0.03-s pre-target time points.

The 15× 15 grid provides a full representation of the joint influences
of delta-band neural amplitude and modeled oscillator phase on hit
rates. To reduce complexity for the statistical analysis, hit rates were av-
eraged across high 2-Hz amplitude bins (7 bins) and across low 2-Hz
amplitude bins (7 bins) in order to test for performance modulations
depending on neural amplitude variations. Similar to the analysis of
the behavioral data, a quadratic function was fitted to the hit rates as a
function of modeled oscillator phase, independently for high and low
neural amplitudes. The estimated quadratic coefficients were subse-
quently tested against zero using a one-sample t-test (separately for
high and low amplitudes) as well as compared against each other
using a paired-samples t-test.

MEG data analysis: modulation of performance by neural amplitude in a
wider time–frequency window

In a further analysis, we examined whether pre-target amplitude
fluctuations at other neural frequencies and time points predicted the
probability of detecting a target tone (intensity change). In detail, for
each time–frequency bin (−0.3 to 0 s, 1–20 Hz), single-trial neural am-
plitudes were divided into 15 overlapping percentile bins (width: 30%)
and hit rate was calculated for each bin. A quadratic function was fitted
to the 15 hit rates as a function of amplitude percentile, independently
for each time–frequency bin. For each participant, this resulted in one
time–frequency representation (−0.3 to 0 s, 1–20 Hz) of estimated
linear coefficients (i.e., the degree of linear modulation of hit rate by
relative amplitude changes) and one time–frequency representation
of estimated quadratic coefficients (i.e., the degree of quadraticmodula-
tion of hit rate by relative amplitude change).

Two separate one-sample t-tests were conducted for each time–
frequency bin in order to test for linear and for quadratic modulation
of hit rate by neural amplitude. The first tested the estimated linear co-
efficients against zero, the second tested the estimated quadratic coeffi-
cients against zero. This resulted in two time–frequency statistical maps
containing p-values. A cluster extent threshold corrected for multiple
comparisons at a level of P ≤ 0.05 (Slotnick et al., 2003; Slotnick and
Schacter, 2004). The cluster extent threshold was determined using a
Monte Carlo simulation that was conducted independently for each of
the two time–frequency statistical maps (linear coefficients; quadratic
coefficients). In detail, p-values within each time–frequency statistical
map were permuted 5000 times (i.e., shuffled across time–frequency
bins) and the maximum cluster extent (entry threshold P ≤ 0.01) on
each permutation provided a distribution of maximum cluster extents
in random data. The distribution of random cluster extents was then
compared to the size of observed clusters (entry threshold P ≤ 0.01),
such that only those clusters that were larger than the 95th percentile
of the permutation distributionwere considered statistically significant.

MEG data analysis: low-frequency modulatory influences on linear/qua-
dratic effects

In a final analysis, we examined whether low-frequency neural am-
plitude (2 Hz; delta band) has a modulatory influence on the linear or
quadratic relationship between hit rate and neural amplitude observed
in the analysis for each time–frequency bin (−0.3 to 0 s, 1–20Hz). Low-
frequency modulatory influences were independently investigated for
each significant cluster.
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In detail, for each time–frequencybinwithin a significant cluster, trials
were sorted into a 15 × 15 grid of overlapping percentile bins (width:
30%) according to the high-frequency neural amplitudes (i.e., 7–9 Hz,
17–20 Hz, or 13–14 Hz; see Results) and the 2-Hz neural amplitudes at
the same time point. For each bin of the 15 × 15 grid, the proportion of
correct responses (hit rate) was calculated. Subsequently, the 15 × 15
hit-rate grids were averaged across time–frequency bins.

Modulatory influences of 2-Hz neural amplitude were then exam-
ined as follows. For significant linear clusters, a linear functionwasfitted
to the 15hit rates as a function of high-frequency amplitude (i.e., 7–9Hz
or 17–20 Hz; see Results), independently for each 2-Hz amplitude bin.
Similarly, for significant quadratic clusters, a quadratic function was
fitted to the 15 hit rates as a function high-frequency amplitude
(i.e., 13–14 Hz; see Results), independently for each 2-Hz amplitude
bin. This resulted in one linear/quadratic coefficient for each 2-Hz am-
plitude bin. Based on the distribution of the linear/quadratic coefficients
as a function of 2-Hz amplitude (see Results), quadratic trend analyses
were carried out in order to statistically test for 2-Hz modulatory influ-
ences. That is, a quadratic function was fitted either to the linear or
quadratic coefficients as a function of 2-Hz amplitude, and estimated
quadratic coefficients were subsequently tested against zero using a
one-sample t-test, independently for each cluster.

Results

Human participants listened to temporally variable tone sequences
(average onset-to-onset interval of 0.5 s = 2 Hz) and detected near-
threshold target tones that were slightly louder in sound level than
non-target tones (titrated for each individual; Fig. 2). Participants' aver-
age hit rate was 0.651 (±0.114 SD). The false alarm rate was 0.028
(±0.021 SD; calculated using the procedure described in Bendixen
and Andersen, 2013). Here we investigated the extent to which tempo-
ral expectations in temporally variable sequences modulated target-
detection performance as well as the association between detection
performance and MEG-recorded pre-target neural amplitude states.

Behavioral data: modulation of perceptual performance by modeled oscil-
lator phase

Each tone sequence exhibited temporal variability such that the
temporal context leading up to a target tone varied. The degree to
which each target was temporally expected was quantified as the
phase of an oscillation estimated from a mathematical oscillator
model (Large and Jones, 1999).Modeled phase values close to zero indi-
cate good correspondence between the expected and the physical tone
onset, while larger-magnitude values indicate that the toneonsetwould
have been relatively unexpected (Fig. 2A).

Single-trials were sorted into 15 bins according to the modeled
oscillator phase (Fig. 3A), and hit rate was calculated for each bin.
The relationship between temporal expectations (modeled phase) and
perceptual performance was assessed by means of a quadratic fit
to hit rates as a function of modeled oscillator phase bins (Fig. 3B).
Estimated quadratic coefficients were significantly smaller than zero
(t19 = −2.90; P = 0.009, r = 0.55), indicating that hit rates were
highest when the physical target onset coincided with the expected
onset (i.e., the peak of themodeled oscillation), and lowest when target
onset and expected onset diverged (Fig. 3C). We also examined wheth-
er the linear trend visible in Fig. 3C is statistically reliable by testing es-
timated linear coefficients (fromour quadratic functionfit) against zero.
No significant difference was observed (t19 = 1.48, P = 0.154, r =
0.322).

Auditory cortex underlies delta-band (2-Hz) neural responses

The trial-averaged time-domain MEG signal was submitted to a fast
Fourier transform (FFT), and the evoked amplitude spectrum was

calculated (Fig. 4, left panel). The spectrum shows clear peaks at the av-
erage stimulation frequency (2 Hz) and its harmonics. Based on the
complex coefficients from the fast Fourier transform at 2Hz, a spatial fil-
ter was calculated which shows a typical auditory MEG topography
(Fig. 4) and whose sources localize to auditory cortices (Fig. 4, middle
panel; consistent with Herrmann et al., 2013). Single-trial time courses
were projected through the spatialfilter and thus reflect responseswith
the most likely sources in auditory cortex (i.e., a virtual source; de
Cheveigné and Simon, 2008; Garrido et al., 2013), while other sources
are suppressed. These spatially filtered single-trial time courses were
used for all further analyses.

We then calculated the trial-averaged time-domain signal (time-
locked to the target onset) for the auditory cortex virtual channel
(i.e., after spatial filtering) for hit and miss trials (Fig. 4, top right
panel). As expected, evoked neural responses in the post-target onset
time interval (0.16–0.36 s) were larger for hits versus misses (t19 =
2.95, P = 0.008, r = 0.56; see also Ai and Ro, 2014; Gutschalk et al.,
2008; Henry and Obleser, 2012; Snyder et al., 2015). Finally, an ampli-
tude spectrum was calculated for each spatially filtered single-trial
time-domain signal using a fast Fourier transform, and subsequently av-
eraged across trials, showing a clear peak at 2 Hz (Fig. 4, bottom right
panel). In subsequent analyses we focused on the association between
behavioral performance and pre-target neural activity (and critically
controlled that post-target onset activity variations would not affect
pre-target neural amplitude effects, see Methods and materials).

Interactive influences of low-frequency neural amplitude and temporal
expectations on performance

The amplitude of low-frequency neural oscillatory activity relates to
the number of neurons exhibiting temporally synchronized activity
and/or the strength of neural excitability fluctuations (Musall et al.,
2014). Here we examined whether performance modulations by tem-
poral expectations (modeled oscillator phase) are affected by low-
frequency neural amplitude variations at target onset. To this end, single
trials were sorted into a 15 × 15 grid according to the instantaneous
2-Hz neural amplitude directly prior to target onset (−0.03 to 0) and
the modeled oscillator phase; hit rate was calculated for each bin of
the grid (Fig. 5A).

For the statistical analysis, hit rates for high and low 2-Hz amplitude
bins were averaged separately, and a quadratic function was fitted to
the resulting hit rates as a function of binned modeled oscillator
phase, independently for high and low 2-Hz amplitudes (Fig. 5B). The
mean estimated quadratic coefficient was significantly different from
zero for high 2-Hz amplitudes (t19 = −4.92, P b 0.001, r = 0.75) but
not for low 2-Hz amplitudes (t19=−0.78, P= 0.44, r=0.18). A direct
comparison of themean quadratic coefficients between high and low 2-
Hz amplitudes showed a stronger negative quadratic pattern for high
than low 2-Hz amplitudes (t19 = 2.76, P = 0.012, r = 0.54; Fig. 5C).
Thus, depending on the amplitude of the low-frequency (delta) neural
oscillation, hit rates wereweakly (low amplitude) or strongly (high am-
plitude) modulated by temporal expectations. Furthermore, mean hit
rate across all oscillator phases did not differ between low and high am-
plitudes of the low-frequency oscillation (t19 = 0.06, P = 0.955, r =
0.01), and neither did optimal phase (i.e., the phasewhere performance
was highest; t19 = 0.38, P = 0.707, r=0.077). For qualitatively similar
results using a 2 × 3 grid (amplitude: low, high × phase: early, on time,
late) of non-overlapping bins see the Supplemental Materials and
Figure S1.

We also confirmed the independence of modeled phase and pre-
target 2-Hz neural amplitude (−0.03 to 0 s) by calculating themodula-
tion of neural amplitude as a function of modeled oscillator phase using
the same binning approach as before. Confirming theoretic assumptions,
no linear (t19 = 0.47, P = 0.642, r = 0.108) or quadratic (t19 = −0.25,
P = 0.804, r= 0.058) amplitude modulation was observed.
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Modulation of perceptual performance by neural amplitude in a broader
time–frequency window

Next, we examined whether pre-target neural amplitude fluctua-
tionsmore broadly distributed in time and frequency predict perceptual
performance (−0.3 to 0 s; 1–20Hz). At each time–frequency bin, single
trialswere sorted into 15 bins according to theneural amplitude, andhit
rate was calculated for each bin. A quadratic function was fitted to hit
rates as a function of binned neural amplitude, and the estimated linear
and quadratic coefficients were extracted.

Examining the linear relationship between neural amplitude and hit
rates (linear coefficient tested against zero) revealed two significant
clusters for which hit rates increased with increasing neural amplitude
(Fig. 6A). The first cluster was observed at around −0.15 to −0.03 s
pre-target onset in the 7–9 Hz (alpha; Lehtelä et al., 1997) frequency
range. The second cluster was observed at around −0.1 to −0.05 s
pre-target onset in the 17–20 Hz (beta) frequency range. The individual
linear trends for each cluster are displayed in Fig. 6B.

Examining the quadratic relation between neural amplitude and hit
rates (quadratic coefficient tested against zero) revealed one significant

cluster at around−0.275 to−0.225 s pre-target onset in the 13–14 Hz
(alpha) frequency range (Fig. 6A). For this cluster, hit rates were largest
when neural amplitudewas low or high, while hit rates were lowest for
intermediate neural amplitudes (Fig. 6B).

Note that in Fig. 6 there is no simple (i.e., direct) linear or quadratic
effect of 2-Hz neural amplitude on detection performance due to the
complex interaction pattern with temporal expectations (modeled os-
cillator phase). That is, for early and late targets, hit rates decreased
with increasing 2-Hz amplitude, while for on-time targets, the pattern
was reversed (Fig. 5A).

Low-frequency (delta) neural amplitude modulates linear and quadratic
performance effects

Next, we examinedwhether 2-Hz neural amplitude has amodulato-
ry influence on the linear and quadratic neural amplitude-to-hit rate
relations observed in the overall analysis for each time–frequency bin
(see previous section and Fig. 6).

In detail, for both linear clusters, we investigated the influences of
high-frequency (alpha/beta) neural amplitude (7–9 Hz; 17–20 Hz) on

Fig. 5. Interactive influence of low-frequencyneural amplitude (2Hz) and temporal expectations (modeled oscillator phase) on performance. (A)Hit rate (average across participants) as a
joint function of modeled oscillator phase (i.e., temporal expectation) and 2-Hz neural amplitude prior to target onset (−0.03 to 0 s); pctl — percentile. (B) Hit rates as a function of
modeled oscillator phase bins for high and low 2-Hz neural amplitude (i.e., the average across high and low amplitude bins in panel A, respectively). A quadratic function was fitted to
the hit rate data. (C) Mean quadratic coefficients from quadratic fits to the data in (B). Error bars reflect SEM. *P b 0.05, n.s. — not significant.

Fig. 6. Influence of pre-target neural amplitude on performance. (A) Linear (left, cyan) and quadratic (right, magenta) coefficients from quadratic fits to hit rates as a function bin neural
amplitude, separately for each time–frequency bin. Significant clusters, that is, where the linear/quadratic coefficients are significantly different from zero, are outlined in black
(i.e., modulation of hit rates by neural amplitude). (B) Predicted hit rates for the significant clusters in (A). Individual fits are displayed in gray and the average across participants in
color. pctl — percentiles.
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hit rate for different magnitudes of the low-frequency (2 Hz) neural
responses (Fig. 7). That is, single trials were sorted into a 15 × 15 grid
according to the 2-Hz neural amplitude and the high-frequency neural
amplitude (alpha/beta). Hit rate was calculated for each grid bin, and
a linear function was fitted to hit rates as a function of high-frequency
neural amplitude, separately for each 2-Hz amplitude bin. Modulation
of linear coefficients by 2-Hz amplitudewas tested statistically by fitting
a quadratic function to the linear coefficients and testing the resulting
quadratic coefficient against zero. For neither cluster (7–9 Hz and
17–20 Hz) were the quadratic coefficients significantly different from
zero (7–9 Hz: t19 = −1.59, P = 0.127, r = 0.34; 17–20 Hz: t19 =
0.33, P= 0.747, r=0.08). However, the presence of a 2-Hzmodulatory
effect on the 7–9 Hz cluster (which is apparent visually in Fig. 7B and
C) was confirmed by a significant dependent samples t-test testing the
mean linear coefficients across the two binswith lowest 2-Hz amplitude
and the two bins with highest 2-Hz amplitude against the mean linear
coefficients across three intermediate bins (0.55–0.65 pctl; t19 = 3.02,
P= 0.007, r=0.57). Hit rates most strongly decreasedwith decreasing
alpha amplitude (7–9 Hz) when the amplitude of the delta response
(2 Hz) was intermediate.

Finally, we examined low-frequency (2 Hz) amplitude influences on
the quadratic relation between 13–14 Hz (alpha) neural amplitude and
hit rates (Fig. 8). That is, single trials were sorted into a 15 × 15 grid ac-
cording to the 2-Hz neural amplitude and the 13–14-Hz neural ampli-
tude, and a quadratic function was fitted to hit rates (that were
calculated for each grid bin) as a function of 13–14-Hz amplitude, sepa-
rately for each 2-Hz amplitude bin. The 2-Hz modulatory influences
were statistically tested using a quadratic trend analysis on quadratic
coefficients (Fig. 8B). Themean estimated quadratic coefficient was sig-
nificantly larger than zero (t19=2.88, P=0.01, r=0.55), thus showing
a positive quadratic trend. In other words, target detection performance
was best when low-frequency amplitude and high-frequency ampli-
tude were simultaneously high or low. Intermediate neural amplitudes
simultaneously in both frequency bands, however, showed lowest de-
tection performance.

Note thatmodulation of perceptual performance by themodeled os-
cillator phase (temporal expectations)was notmodulated by amplitude
(low versus high) in any of the three alpha/beta clusters (comparison of

quadratic coefficients for low versus high alpha/beta amplitude, similar-
ly calculated as for 2-Hz neural activity; for all, P N 0.30).

Discussion

The current MEG study investigated the joint influence of temporal
expectations and neural amplitude on target detection performance.
The results were as follows: (i) Detection performance was highest for
expected events in temporally-variable sequences; (ii) Modulation of

Fig. 7.Modulatory influences of low-frequency amplitudes on linear 7–9 Hz and 17–20 Hz effects. (A) Hit rates as a joint function of 7–9-Hz amplitude and 2-Hz amplitude (pctl—
percentile). (B) Linear coefficients fromfitting a linear function to hit rates as a function of 7–9-Hz amplitude for each2-Hz amplitude bin. Error bars reflect SEM. (C) Predictedhit rates for
each 2-Hz amplitude bin. (D–F) Similar to (A–C) for the linear 17–20 Hz cluster.

Fig. 8.Modulatory influences of low-frequency amplitudes on quadratic 13–14 Hz effects.
(A) Hit rates as a joint function of 13–14-Hz amplitude and 2-Hz amplitude (pctl —
percentile). (B) Quadratic coefficients from fits to hit rates as a function of 13–14-Hz
amplitude for each 2-Hz amplitude bin. Error bars reflect SEM. (C) Predicted hit rates
for each 2-Hz amplitude bin.

494 B. Herrmann et al. / NeuroImage 124 (2016) 487–497



performance by temporal expectations was affected by low-frequency
(delta-band) amplitude; (ii) Alpha- and beta-band neural amplitude
linearly and quadratically modulated performance, and these relations
were in turn modulated by delta-band neural amplitude. Thus, the
current study shows that temporal expectations and neural amplitude
fluctuations interactively influenceperceptual performance, and further
that performance is linearly and nonlinearly affected by complex inter-
actions between multiple neural frequency bands.

Temporal expectations affect perceptual performance in temporally
variable sequences

Detection of near-threshold intensity changes was best when the
timing of targetswas consistent with temporal expectations. Our obser-
vation is in line with previous studies manipulating either the timing of
targets or the timing of a whole sequence (Barnes and Jones, 2000;
Jones et al., 2002, 2006; Mathewson et al., 2012; Rohenkohl et al.,
2012). Importantly, our results show that subtle variations in the degree
of temporal expectation also affect perceptual performance in tempo-
rally variable sequences (see also Jones and Yee, 1997).

Temporal expectations were quantified as the phase of a modeled
oscillation (Large and Jones, 1999; McAuley and Jones, 2003), in line
with recent theoretical and empirical advances suggesting that the
phase of low-frequency neural oscillations reflects a biophysical sub-
strate of temporal expectations (Henry and Herrmann, 2014; Large,
2008; Schroeder and Lakatos, 2009b). Hence, the modulation of perfor-
mance by the modeled oscillator phase (temporal expectations) is also
in line with previous reports of performance modulations by the neural
phase of entrained low-frequency oscillations (Cravo et al., 2013; Henry
et al., 2014; Henry and Obleser, 2012; Neuling et al., 2012; Stefanics
et al., 2010).

Low-frequency neural amplitude variations influence performance modu-
lation by temporal expectations

Temporal expectation (i.e., modeled oscillator phase) affected
performance only for high but not for low amplitudes of the delta neural
oscillation in auditory cortex. On the level of single- or multi-unit activ-
ity, delta oscillations reflect fluctuations in excitability (Bishop, 1933;
Lakatos et al., 2005), with the oscillations' amplitude reflecting the
strength of the excitability fluctuations (Fig. 1, Jensen and Mazaheri,
2010). In MEG recordings, low-frequency oscillatory amplitude is addi-
tionally influenced by the number of neurons exhibiting synchronized
excitability fluctuations, because neural activity measured at the scalp
reflects the summed activity of many responding neurons (Musall
et al., 2014). Consequently, MEG delta-band amplitude is related to
the strength of excitability fluctuations as well as to the temporal syn-
chrony of these fluctuations between neurons, and both, in the context
of rhythmic stimulation, might be affected by the level of synchroniza-
tion of neural oscillations with external events (Thut et al., 2011). The
observed relation between perceptual performance and temporal
expectations (modeled oscillator phase) is thus consistent with neural
dynamics: Perceptual performance is only modulated when neural ex-
citability fluctuations and/or temporal synchrony between neurons
are large (high amplitude).

Performance modulation by (neural) oscillatory phase for high but
not for low neural amplitudes has also been observed for alpha oscilla-
tions (Mathewson et al., 2009). Our approach, however, avoids the possi-
bility of poor neural phase estimation for low neural amplitude values
(Muthukumaraswamy and Singh, 2011) by estimating oscillatory phase
using a model from established behavioral research (Large and Jones,
1999). Thus, we can be confident that this finding reflects a fundamental
difference between low and high 2-Hz amplitude rather than reflecting
an inability to measure neural phase when neural amplitude is low.

Furthermore, overall performance did not differ between low and
high amplitudes of the low-frequency (delta) oscillation. This

observation can be related to the (a)symmetry of 2-Hz neural excitabil-
ity fluctuations. Consider for example alpha (and sometimes beta;
Weisz et al., 2010) oscillations, which are thought to reflect asymmetric
excitability fluctuations (Jensen and Mazaheri, 2010; Klimesch et al.,
2007;Mathewson et al., 2011).When the strength of excitability fluctu-
ations increases (i.e., when alpha/beta amplitude is high), neural popu-
lations exhibit longer periods of low excitability and thus inhibition,
resulting in overall decreased performance compared to when
alpha/beta amplitude is low (Bonnefond and Jensen, 2012; Capilla
et al., 2014; Haegens et al., 2011a; van Ede et al., 2011). In contrast,
the absence of a performance difference here between low and
high delta amplitude speaks against such asymmetry for low-
frequency oscillations, but instead is more consistent with symmet-
rical delta-band neural excitability levels.

Linear relation between alpha/beta-band activity and perceptual
performance

We also observed a positive linear relation between pre-target neu-
ral alpha/beta-band activity in auditory cortex and performance (Fig. 6).
Most previous studies investigating alpha- and beta-band amplitude
focused on posterior or somatosensory cortices (Capilla et al., 2014;
Haegens et al., 2011b; Jensen and Mazaheri, 2010; van Ede et al.,
2011). In the auditory domain, evidence for alpha/beta-band effects is
sparse (but see Frey et al., 2014; Lehtelä et al., 1997; Müller et al.,
in press; for a review see Weisz and Obleser, 2014) and our study thus
provides important evidence that alpha- and beta-band activity in audi-
tory cortex affects perceptual performance.

However, the direction of our observed effects is in contrast to previ-
ous observations. That is, previous studies observed a negative linear re-
lation between alpha/beta amplitude and performance (Capilla et al.,
2014; van Dijk et al., 2008), which has been related to asymmetric excit-
ability fluctuations and consequently to neural inhibition (see previous
section, Jensen and Mazaheri, 2010). Our observation of a positive linear
relation is inconsistent with this neural inhibition framework. Neverthe-
less, there are reports of a positive linear relation similar to our findings
(Arnal et al., 2015; Haegens et al., 2014; Jones et al., 2010). In addition,
alpha oscillations in the temporal cortex maintain an opposite relation-
ship to behavioral performance and spiking output than alpha oscillations
in visual cortices (Bollimunta et al., 2008;Mo et al., 2011) in linewith dis-
tributed alpha systems in the brain (Başar et al., 1997). These results, to-
gether with observed nonlinear relations between alpha/beta amplitude
and behavior (Ai and Ro, 2014; Linkenkaer-Hansen et al., 2004; Zhang
and Ding, 2010), tentatively suggest that neural inhibition associated
with alpha/beta-band oscillations is not a universal phenomenon (Palva
and Palva, 2007, 2011). The positive linear alpha/beta-band effects in
the current study might reflect an increase in oscillatory synchronization
between neural populations at alpha and beta frequency just prior to de-
tected targets. In particular for the beta band, bursts of synchronous activ-
ity have been related to anticipation during rhythm perception (Arnal
et al., 2015; Fujioka et al., 2012; Large and Snyder, 2009; Saleh et al.,
2010).

Quadratic modulation of performance by neural amplitude in multiple
frequency bands

Wealso observed a positive quadraticmodulation of perceptual per-
formance in the alpha frequency band. Furthermore, delta-band (2 Hz)
activity modulated both the linear and quadratic effects in the alpha
band in a quadratic fashion. The linear performance decrease with de-
creasing alpha amplitude was strongest at intermediate delta ampli-
tudes, and the quadratic modulation of performance in the alpha-band
was weakest at intermediate delta amplitudes.

Ourfindings are consistentwith a theoretical perspective that places
complex neural interactions at the center of brain and cognitive func-
tion (Breakspear, 2004; Buzsaki, 2006; Kayser et al., 2015; Stam, 2005;
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Thut et al., 2012; Womelsdorf et al., 2014). Specifically, effects of cross-
frequency relations on performance have recently been observed for
phase–phase interactions (Fiebelkorn et al., 2013; Henry et al., 2014),
phase–amplitude coupling (Arnal et al., 2015; Friese et al., 2013), and
power–power coupling (Mazaheri et al., 2009). An important distinc-
tion between the current study and previous studies (but see Henry
et al., 2014) is that our analysis does not rely on a nested relationship
between low- and high-frequency oscillations, but instead shows that
coincidental (i.e., nested or non-nested) amplitude fluctuations in mul-
tiple frequency bands affect performance. Investigation of coincidental
neural dynamics might therefore reveal complex relations between
multiple frequency bands hidden in or different from investigations of
systematic, coupled fluctuations across neural frequencies.

Critically, in the current data, performance was relatively good for
both low and high values of alpha and delta amplitude, while perfor-
mance was relatively poor for intermediate amplitude values (Fig. 8).
A speculative interpretation of the data is that the quadratic modula-
tions of performance might be a signature of shifts between states in
which the current listening task could be solved. In particular in the con-
text of temporally variable sequences like those examined here, a pre-
target high-delta state might reflect a successful integration of preced-
ing temporal context using a “rhythmic” processing mode (Lakatos
et al., 2008). On the other hand, a pre-target low-delta state might re-
flect a different, more “continuous” processing mode after failure to in-
tegrate the previous temporal context (Henry and Herrmann, 2012;
Schroeder and Lakatos, 2009a). In contrast to shifts in states induced
by external event structure (affecting the delta band), alpha-band activ-
ity might be related to more internal, non-stimulus-driven attentional
processes, perhaps related to the time scale of attention. One strategy
(associated with low alpha amplitudes) might be to focus locally and
shift attention between individual tones to monitor for intensity devi-
ants. On the other hand, a more global (high alpha) strategy would in-
volve directing attention to the sequence level. Importantly, different
states support perceptual performance, while intermediate delta and
alpha levels might reflect ametabolically relatively expensive transition
period between the states (Stam, 2005). Although this interpretation is
speculative and needs further examination, the current findings point
towards complex nonlinear dynamics of neural activity affecting listen-
ing performance.

Conclusion

The current MEG study investigated the interaction of temporal ex-
pectations in temporally variable sequences and neural amplitude vari-
ations in auditory cortex on listening performance. We show that
performance modulations by temporal expectations are only observed
when pre-target neural amplitude is high. In addition, performance is
linearly and nonlinearly modulated by pre-target alpha-band activity
and linearly modulated by beta-band activity. Effects of alpha activity
on behavior were further modulated by low-frequency neural activity
in the delta band. Thus, complex interactions of temporal expectations
and neural activity in multiple frequency bands influence perceptual
performance in a temporally variable context.

Acknowledgments

Research is supported by theMax Planck Society. B.H.,M.J.H., and J.O.
are supported by a Max Planck Research Group grant to J.O. We thank
Yvonne Wolff for her support during data collection. Three anonymous
reviewers helped improve and clarify this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.09.019.

References

Ai, L., Ro, T., 2014. The phase of prestimulus alpha oscillations affects tactile perception.
J. Neurophysiol. 111, 1300–1307.

Ali, M.M., Sellers, K.K., Fröhlich, F., 2013. Transcranial alternating current stimulation
modulates large-scale cortical network activity by network resonance. J. Neurosci.
33, 11262–11275.

Arnal, L.H., Giraud, A.-L., 2012. Cortical oscillations and sensory predictions. Trends Cogn.
Sci. 16, 390–398.

Arnal, L.H., Doelling, K.B., Poeppel, D., 2015. Delta-beta coupled oscillations underlie tem-
poral prediction accuracy. Cereb. Cortex 25, 3077–3085.

Barnes, R., Jones, M.R., 2000. Expectancy, attention, and time. Cogn. Psychol. 41, 254–311.
Başar, E., Schürmann, M., Başar-Eroglu, C., Karakaş, S., 1997. Alpha oscillations in brain

functioning: an integrative theory. Int. J. Psychophysiol. 26, 5–29.
Bell, A.J., Sejnowski, T.J., 1995. An information maximization approach to blind separation

and blind deconvolution. Neural Comput. 7, 1129–1159.
Bendixen, A., Andersen, S.K., 2013. Measuring target detection performance in paradigms

with high event rates. Clin. Neurophysiol. 124, 928–940.
Besl, P.J., McKay, N.D., 1992. A method for registration of 3-D shapes. IEEE Trans. Pattern

Anal. Mach. Intell. 14, 239–256.
Besle, J., Schevon, C.A., Mehta, A.D., Lakatos, P., Goodman, R.R., McKhann, G.M., Emerson,

R.G., Schroeder, C.E., 2011. Tuning of the human neocortex to the temporal dynamics
of attended events. J. Neurosci. 31, 3176–3185.

Bishop, G.H., 1933. Cyclic changes in excitability of the optic pathway of the rabbit. Am.
J. Physiol. 103, 213–224.

Bollimunta, A., Cheng, Y., Schroeder, C.E., Ding, M., 2008. Neuronal mechanisms of cortical
alpha oscillations in awake-behaving macaques. J. Neurosci. 28, 9976–9988.

Bonnefond, M., Jensen, O., 2012. Alpha oscillations serve to protect working memory
maintenance against anticipated distracters. Curr. Biol. 22, 1969–1974.

Breakspear, M., 2004. “Dynamic” connectivity in neural systems. Neuroinformatics 2,
205–226.

Busch, N.A., VanRullen, R., 2010. Spontaneous EEG oscillations reveal periodic sampling of
visual attention. Proc. Natl. Acad. Sci. 107, 16048–16053.

Busch, N.A., Dubois, J., VanRullen, R., 2009. The phase of ongoing EEG oscillations predicts
visual perception. J. Neurosci. 29, 7869–7876.

Buzsaki, G., 2006. Rhythms of the Brain. Oxford University Press, New York, USA.
Canavier, C.C., 2015. Phase-resetting as a tool of information transmission. Curr. Opin.

Neurobiol. 31, 206–213.
Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., Gross, J., 2014. Dissociated α-band

modulations in the dorsal and ventral visual pathways in visuospatial attention and
perception. Cereb. Cortex 24, 550–561.

Cravo, A.M., Rohenkohl, G., Wyart, V., Nobre, A.C., 2013. Temporal expectation enhances
contrast sensitivity by phase entrainment of low-frequency oscillations in visual
cortex. J. Neurosci. 33, 4002–4010.

de Cheveigné, A., Simon, J.Z., 2008. Denoising based on spatial filtering. J. Neurosci.
Methods 171, 331–339.

Fiebelkorn, I.C., Snyder, A.C., Mercier, M.R., Butler, J.S., Molholm, S., Foxe, J.J., 2013. Cortical
cross–frequency coupling predicts perceptual outcomes. NeuroImage 69, 126–137.

Fischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical surface-based analysis II: inflation,
flattening, and a surface-based coordinate system. NeuroImage 9, 195–207.

Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M., 1999b. High-resolution intersubject aver-
aging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284.

Frey, J.N., Mainy, N., Lauchaux, J.-P., Müller, N., Bertrand, O., Weisz, N., 2014. Selective
modulation of auditory cortical alpha activity in an audiovisual spatial attention
task. J. Neurosci. 34, 6634–6639.

Friese, U., Köster, M., Hassler, U., Martens, U., Trujillo-Barreto, N.J., Gruber, T., 2013.
Successful memory encoding is associated with increased cross–frequency coupling
between frontal theta and posterior gamma oscillations in human scalp-recorded
EEG. NeuroImage 66, 642–647.

Fröhlich, F., McCormick, D.A., 2010. Endogenous electric fields may guide neocortical net-
work activity. Neuron 67, 129–143.

Fujioka, T., Trainor, L.J., Large, E.W., Ross, B., 2012. Internalized timing of isochronous
sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32, 1791–1802.

Garrido, M.I., Sahani, M., Dolan, R.J., 2013. Outlier responses reflect sensitivity to statistical
structure in the human brain. PLoS Comput. Biol. 9, e1002999.

Giraud, A.-L., Poeppel, D., 2012. Cortical oscillations and speech processing: emerging
computational principles and operations. Nat. Neurosci. 15.

Gross, J., Kujala, J., Hämäläinen, M.S., Timmermann, L., Schnitzler, A., Salmelin, R., 2001.
Dynamic imaging of coherent sources: studying neural interactions in the human
brain. Proc. Natl. Acad. Sci. 98, 694–699.

Gutschalk, A., Michey, C., Oxenham, A.J., 2008. Neural correlates of auditory perceptual
awareness under informational masking. PLoS Biol. 6, e138.

Haegens, S., Händel, B.F., Jensen, O., 2011a. Top-down controlled alpha band activity in so-
matosensory areas determines behavioral performance in a discrimination task.
J. Neurosci. 31, 5197–5204.

Haegens, S., Nácher, V., Luna, R., Romo, R., Jensen, O., 2011b.α-Oscillations in the monkey
sensorimotor network influence discrimination performance by rhythmical inhibi-
tion of neuronal spiking. Proc. Natl. Acad. Sci. 108, 19377–19382.

Haegens, S., Vázquez, Y., Zainos, A., Alvarez, M., Jensen, O., Romo, R., 2014.
Thalamocortical rhythms during a vibrotactile detection task. Proc. Natl. Acad. Sci.
111, 1797–1805.

Hämäläinen, M.S., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. Magnetoen-
cephalography— theory, instrumentation, and applications to noninvasive studies of
the working human brain. Rev. Mod. Phys. 65, 413–497.

Han, X., Jovicich, J., Salat, D.H., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco,
J., Albert, M., Killiany, R., Maguire, P., Rosas, D., Makris, N., Dale, A.M., Dickerson, B.,

496 B. Herrmann et al. / NeuroImage 124 (2016) 487–497

http://dx.doi.org/10.1016/j.neuroimage.2015.09.019
http://dx.doi.org/10.1016/j.neuroimage.2015.09.019
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0005
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0005
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0010
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0010
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0010
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0015
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0015
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0500
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0500
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0020
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0025
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0025
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0030
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0030
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0035
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0035
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0040
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0040
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0045
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0045
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0050
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0050
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0055
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0055
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0060
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0060
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0065
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0065
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0075
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0075
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0070
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0070
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0080
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0085
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0085
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0090
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0090
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0090
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0095
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0095
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0095
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0100
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0100
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0105
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0105
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0110
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0110
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0115
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0115
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0120
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0120
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0120
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0125
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0125
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0125
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0130
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0130
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0135
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0135
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0140
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0140
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0145
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0145
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0150
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0150
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0155
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0155
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0160
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0160
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0160
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0165
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0165
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0165
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0170
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0170
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0175
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0175
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0175


Fischl, B.R., 2006. Reliability of MRI-derived measurements of human cerebral
cortical thickness: the effects of field strength, scanner upgrade and manufacturer.
NeuroImage 32, 180–194.

Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S.S., Greenlee, M.W., 2013. Prestimulus os-
cillatory phase at 7 Hz gates cortical information flow and visual perception. Curr.
Biol. 23, 2273–2278.

Henry, M.J., Herrmann, B., 2012. A precluding role of low-frequency oscillations for
auditory perception in a continuous processing mode. J. Neurosci. 32, 17525–17527.

Henry, M.J., Herrmann, B., 2014. Low-frequency neural oscillations support dynamic at-
tending in temporal context. Timing & Time Perception. 2 pp. 62–86.

Henry, M.J., Obleser, J., 2012. Frequency modulation entrains slow neural oscillations and
optimizes human listening behavior. Proc. Natl. Acad. Sci. 109, 20095–20100.

Henry, M.J., Herrmann, B., Obleser, J., 2014. Entrained neural oscillations in multiple fre-
quency bands co-modulate behavior. Proc. Natl. Acad. Sci. 111, 14935–14940.

Herrmann, B., Henry, M.J., Grigutsch, M., Obleser, J., 2013. Oscillatory phase dynamics in
neural entrainment underpin illusory percepts of time. J. Neurosci. 33, 15799–15809.

Inden, B., Malisz, Z., Wagner, P., Wachsmuth, I., 2012. Rapid entrainment to spontaneous
speech: a comparison of oscillator models. In: Miyake, N., Peebles, D., Cooper, R.P.
(Eds.), 34th Annual Conference of the Cognitive Science Society. Cognitive Science
Society, Sapporo, Japan.

Jensen, O., Mazaheri, A., 2010. Shaping functional architecture by oscillatory alpha activi-
ty: gating by inhibition. Front. Hum. Neurosci. 4, 186.

Jones, M.R., Boltz, M.G., 1989. Dynamic attending and responses to time. Psychol. Rev. 96,
459–491.

Jones, M.R., Yee, W., 1997. Sensitivity to time change: the role of context and skill. J. Exp.
Psychol. Hum. Percept. Perform. 23, 693–709.

Jones, M.R., Moynihan, H., MacKenzie, N., Puente, J., 2002. Temporal aspects of stimulus-
driven attending in dynamic arrays. Psychol. Sci. 13, 313–319.

Jones, M.R., Johnston, H.M., Puente, J., 2006. Effects of auditory pattern structure on antic-
ipatory and reactive attending. Cogn. Psychol. 53, 59–96.

Jones, S.R., Kerr, C.E., Wan, Q., Pritchett, D.L., Hämäläinen, M.S., Moore, C.I., 2010. Cued
spatial attention drives functionally relevant modulation of the mu rhythm in prima-
ry somatosensory cortex. J. Neurosci. 30, 13760–13765.

Kayser, C., Wilson, C., Safaai, H., Sakata, S., Panzeri, S., 2015. Rhythmic auditory cortex ac-
tivity at multiple timescales shapes stimulus-response gain and background firing.
J. Neurosci. 35, 7750–7762.

Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: the inhibition–
timing hypothesis. Brain Res. Rev. 53, 63–88.

Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G., Schroeder, C.E., 2005. An oscilla-
tory hierarchy controlling neuronal excitability and stimulus processing in the audi-
tory cortex. J. Neurophysiol. 94, 1904–1911.

Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., Schroeder, C.E., 2008. Entrainment of neuro-
nal oscillations as a mechanism of attentional selection. Science 320, 110–113.

Lakatos, P., Musacchia, G., O'Connel, M.N., Falchier, A.Y., Javitt, D.C., Schroeder, C.E., 2013.
The spectrotemporal filter mechanism of auditory selective attention. Neuron 77,
750–761.

Lange, K., 2009. Brain correlates of early auditory processing are attenuated by expecta-
tions for time and pitch. Brain Cogn. 69, 127–137.

Large, E.W., 2008. Resonating to musical rhythm: theory and experiment. In: Grondin, S.
(Ed.), Psychology of Time. Emerald Group, Bingley, UK, pp. 189–232.

Large, E.W., Jones, M.R., 1999. The dynamics of attending: how people track time-varying
events. Psychol. Rev. 106, 119–159.

Large, E.W., Snyder, J.S., 2009. Pulse and meter as neural resonance. Ann. N. Y. Acad. Sci.
1169, 46–57.

Lawrance, E.L.A., Harper, N.S., Cooke, J.E., Schnupp, J.W.H., 2014. Temporal predictability
enhances auditory detection. J. Acoust. Soc. Am. 136, EL357–EL363.

Lehtelä, L., Salmelin, R., Hari, R., 1997. Evidence for reactivemagnetic 10-Hz rhythm in the
human auditory cortex. Neurosci. Lett. 222, 111–114.

Linkenkaer-Hansen, K., Nikulin, V.V., Palva, S., Ilmoniemi, R.J., Palva, J.M., 2004.
Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci.
24, 10186–10190.

Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J., 1996. Independent component analysis of
electroencephalographic data. In: Touretzky, D., Mozer, M., Hasselmo, M. (Eds.), Ad-
vances in Neural Information Processing Systems. MIT Press, Cambridge, MA, USA.

Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M., Ro, T., 2009. To see or not to see:
prestimulus phase predicts visual awareness. J. Neurosci. 29, 2725–2732.

Mathewson, K.E., LIeras, A., Beck, D.M., Fabiani, M., Ro, T., Gratton, G., 2011. Pulsed out of
awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical
processing. Front. Psychol. 2, 99.

Mathewson, K.E., Prudhomme, C., Fabiani, M., Beck, D.M., Lleras, A., Gratton, G., 2012.
Making waves in the stream of consciousness: entraining oscillations in EEG alpha
and fluctuations in visual awareness with rhythmic visual stimulation. J. Cogn.
Neurosci. 24, 2321–2333.

Mazaheri, A., Nieuwenhuis, I.L., van Dijk, H., Jensen, O., 2009. Prestimulus alpha and mu
activity predicts failure to inhibit motor responses. Hum. Brain Mapp. 30, 1791–1800.

McAuley, J.D., Jones, M.R., 2003. Modeling effects of rhythmic context on perceived dura-
tion: a comparison of interval and entrainment approaches to short-interval timing.
J. Exp. Psychol. Hum. Percept. Perform. 29, 1102–1125.

Mo, J., Schroeder, C.E., Ding, M., 2011. Attentional modulation of alpha oscillations in ma-
caque inferotemporal cortex. J. Neurosci. 31, 878–882.

Monto, S., Palva, S., Voipio, J., Palva, J.M., 2008. Very slow EEG fluctuations predict the
dynamics of stimulus detection and oscillation amplitudes in humans. J. Neurosci.
28, 8268–8272.

Müller, N., Leske, S., Hartmann, T., Szebényi, S., Weisz, N., 2015. Listen to yourself: the me-
dial prefrontal cortex modulates auditory alpha power during speech preparation.
Cereb. Cortex (in press).

Musall, S., von Pföstl, V., Rauch, A., Logothetis, N.K., Whittingstall, K., 2014. Effects of neu-
ral synchrony on surface EEG. Cereb. Cortex 24.

Muthukumaraswamy, S.D., Singh, K.D., 2011. A cautionary note on the interpretation of
phase-locking estimates with concurrent changes in power. Clin. Neurophysiol.
122, 2324–2325.

Neuling, T., Rach, S., Wagner, S., Wolters, C.H., Herrmann, C.S., 2012. Good vibrations:
oscillatory phase shapes perception. NeuroImage 63, 771–778.

Ng, B.S.W., Schroeder, T., Kayser, C., 2012. A precluding but not ensuring role of entrained
low-frequency oscillations for auditory perception. J. Neurosci. 32, 12268–12276.

Nitschke, J.B., Miller, G.A., Cook III, E.W., 1998. Digital filtering in EEG/ERP analysis: some
technical and empirical comparisons. Behav. Res. Methods Instrum. Comput. 30,
54–67.

Nolte, G., 2003. The magnetic lead field theorem in the quasi-static approximation and its
use for magnetoencephalography forward calculation in realistic volume conductors.
Phys. Med. Biol. 48, 3637–3652.

O'Connel, M.N., Barczak, A., Schroeder, C.E., Lakatos, P., 2014. Layer specific sharpening
of frequency tuning by selective attention in primary auditory cortex. J. Neurosci.
34, 16496–16508.

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., 2011. FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput.
Intell. Neurosci. 2011, 156869.

Palva, S., Palva, J.M., 2007. New vistas for alpha-frequency band oscillations. Trends
Neurosci. 30, 150–158.

Palva, S., Palva, J.M., 2011. Functional roles of alpha-band phase synchronization in local
and large-scale cortical networks. Front. Psychol. 2, 204.

Pascual-Marqui, R.D., 2002. Standardized low resolution brain electromagnetic tomogra-
phy (sLORTEA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12.

Peelle, J.E., Davis, M.H., 2013. Neural oscillations carry speech rhythm through to compre-
hension. Front. Psychol. 3, 320.

Rohenkohl, G., Nobre, A.C., 2011. Alpha oscillations related to anticipatory attention
follow temporal expectations. J. Neurosci. 31, 14076–14084.

Rohenkohl, G., Cravo, A.M., Wyart, V., Nobre, A.C., 2012. Temporal expectation improves
the quality of sensory information. J. Neurosci. 32, 8424–8428.

Rosenthal, R., Rubin, D.B., 2003. requivalent: a simple effect size indicator. Psychol. Methods
8, 492–496.

Saleh, M., Reimer, J., Penn, R., Ojakangas, C.L., Hatsopoulos, N.G., 2010. Fast and slow oscil-
lations in human primary motor cortex predict oncoming behaviorally relevant cues.
Neuron 65, 461–471.

Schroeder, C.E., Lakatos, P., 2009a. The gamma oscillation: master or slave? Brain Topogr.
22, 24–26.

Schroeder, C.E., Lakatos, P., 2009b. Low-frequency neuronal oscillations as instruments of
sensory selection. Trends Neurosci. 32, 9–18.

Slotnick, S.D., Schacter, D.L., 2004. A sensory signature that distinguishes true from false
memories. Nat. Neurosci. 7, 664–672.

Slotnick, S.D., Moo, L.R., Segal, J.B., Hart Jr., J., 2003. Distinct prefrontal cortex activity asso-
ciated with item memory and source memory for visual shapes. Cogn. Brain Res. 17,
75–82.

Snyder, J.S., Yerkes, B., Pitts, M.A., 2015. Testing domain-general theories of perceptual
awareness with auditory brain responses. Trends Cogn. Sci. 19, 295–297.

Stam, C.J., 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging
field. Clin. Neurophysiol. 116, 2266–2301.

Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., Ulbert, I., 2010. Phase entrain-
ment of human delta oscillations can mediate the effects of expectation on reaction
speed. J. Neurosci. 30, 13578–13585.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J., 1996. Stimulus specificity of
phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci.
16, 4240–4249.

Taulu, S., Kajola, M., Simola, J., 2004. Suppression of interference and artifacts by the signal
space separation method. Brain Topogr. 16, 269–275.

Tesche, C.D., Uusitalo, M.A., Ilmoniemi, R.J., Huotilainen, M., Kajola, M., Salonen, O., 1995.
Signal-space projections of MEG data characterize both distributed andwell localized
neuronal sources. Electroencephalogr. Clin. Neurophysiol. 95, 189–200.

Thut, G., Schyns, P.G., Gross, J., 2011. Entrainment of perceptually relevant brain oscilla-
tions by non-invasive rhythmic stimulation of the human brain. Front. Psychol. 2,
170.

Thut, G., Miniussi, C., Gross, J., 2012. The functional importance of rhythmic activity in the
brain. Curr. Biol. 22, R658–R663.

Uusitalo, M.A., Ilmoniemi, R.J., 1997. Signal-space projection method for separating MEG
or EEG into components. Med. Biol. Eng. Comput. 35, 135–140.

van Dijk, H., Schoffelen, J.-M., Oostenveld, R., Jensen, O., 2008. Prestimulus oscillatory activity
in the alpha band predicts visual discrimination ability. J. Neurosci. 28, 1816–1823.

van Ede, F., de Lange, F.P., Jensen, O., Maris, E., 2011. Orienting attention to an upcoming
tactile event involves a spatially and temporally specific modulation of sensorimotor
alpha- and beta-band oscillations. J. Neurosci. 31, 2016–2024.

Wallisch, P., Lusignan, M., Benayoun, M., Baker, T.I., Dickey, A.S., Hatsopoulos, N.G., 2009.
Matlab for Neuroscientists. Elsevier Inc., California, USA.

Weisz, N., Obleser, J., 2014. Synchronisation signatures in the listening brain: a perspec-
tive from non-invasive neuroelectrophysiology. Hear. Res. 307, 16–28.

Weisz, N., Hartmann, T., Müller, N., Lorenz, I., Obleser, J., 2010. Alpha rhythms in audition:
cognitive and clinical perspectives. Front. Psychol. 2, 73.

Womelsdorf, T., Valiante, T.A., Sahin, N.T., Miller, K.J., Tiesinga, P., 2014. Dynamic circuit
motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci. 17,
1031–1039.

Zhang, Y., Ding, M., 2010. Detection of a weak somatosensory stimulus: role of the
prestimulusmu rhythm and its top-downmodulation. J. Cogn. Neurosci. 22, 307–322.

497B. Herrmann et al. / NeuroImage 124 (2016) 487–497

http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0180
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0180
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0180
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0185
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0185
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0185
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0190
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0190
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0195
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0195
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0205
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0205
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0200
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0200
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0210
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0210
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0215
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0215
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0215
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0215
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0505
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0505
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0220
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0220
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0235
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0235
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0230
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0230
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0225
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0225
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0240
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0240
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0240
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0245
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0245
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0245
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0250
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0250
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0265
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0265
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0265
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0255
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0255
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0260
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0260
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0270
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0270
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0275
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0275
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0280
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0280
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0285
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0285
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0290
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0290
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0295
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0295
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0300
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0300
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0305
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0305
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0305
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0310
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0310
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0510
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0510
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0510
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0315
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0315
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0315
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0320
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0320
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0325
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0325
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0325
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0330
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0330
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0335
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0335
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0335
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0515
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0515
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0515
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0340
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0340
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0345
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0345
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0345
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0350
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0350
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0355
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0355
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0360
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0360
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0360
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0365
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0365
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0365
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0370
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0370
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0370
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0520
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0520
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0520
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0380
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0380
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0525
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0525
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0385
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0385
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0530
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0530
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0395
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0395
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0390
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0390
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0400
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0400
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0400
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0405
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0405
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0405
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0410
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0410
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0415
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0415
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0425
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0425
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0420
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0420
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0420
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0430
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0430
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0435
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0435
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0440
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0440
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0440
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0445
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0445
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0445
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0450
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0450
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0455
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0455
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0535
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0535
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0535
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0460
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0460
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0465
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0465
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0470
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0470
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0475
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0475
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0475
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0480
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0485
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0485
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0540
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0540
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0490
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0490
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0490
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0495
http://refhub.elsevier.com/S1053-8119(15)00825-3/rf0495

	Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception
	Introduction
	Methods and materials
	Participants
	Acoustic stimulation and procedure
	Behavioral data: model-based estimation of temporal expectation
	Behavioral data: statistical analysis
	MEG recording and preprocessing
	MEG data analysis: spatial filtering and source localization
	MEG data analysis: pre-target oscillatory neural activity
	MEG data analysis: low-frequency neural oscillations and temporal expectations
	MEG data analysis: modulation of performance by neural amplitude in a wider time–frequency window
	MEG data analysis: low-frequency modulatory influences on linear/quadratic effects

	Results
	Behavioral data: modulation of perceptual performance by modeled oscillator phase
	Auditory cortex underlies delta-band (2-Hz) neural responses
	Interactive influences of low-frequency neural amplitude and temporal expectations on performance
	Modulation of perceptual performance by neural amplitude in a broader time–frequency window
	Low-frequency (delta) neural amplitude modulates linear and quadratic performance effects

	Discussion
	Temporal expectations affect perceptual performance in temporally variable sequences
	Low-frequency neural amplitude variations influence performance modulation by temporal expectations
	Linear relation between alpha/beta-band activity and perceptual performance
	Quadratic modulation of performance by neural amplitude in multiple frequency bands

	Conclusion
	Acknowledgments
	Appendix A. Supplementary data
	References


