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A B S T R A C T   

Human environments comprise various sources of distraction, which often occur unexpectedly in time. The 
proneness to distraction (i.e., distractibility) is posited to be independent of attentional sampling of targets, but 
its temporal dynamics and neurobiological basis are largely unknown. Brain oscillations in the theta band (3 – 8 
Hz) have been associated with fluctuating neural excitability, which is hypothesised here to explain rhythmic 
modulation of distractibility. In a pitch discrimination task (N = 30) with unexpected auditory distractors, we 
show that distractor-evoked neural responses in the electroencephalogram and perceptual susceptibility to 
distraction were co-modulated and cycled approximately 3 – 5 times per second. Pre-distractor neural phase in 
left inferior frontal and insular cortex regions explained fluctuating distractibility. Thus, human distractibility is 
not constant but fluctuates on a subsecond timescale. Furthermore, slow neural oscillations subserve the 
behavioural consequences of a hitherto largely unexplained but ever-increasing phenomenon in modern envi
ronments – distraction by unexpected sound.   

1. Introduction 

Selective attention enables humans to focus on relevant information 
at the expense of distraction. The brain prioritizes representations of 
relevant events while filtering out task-irrelevant distractors (Desimone 
and Duncan, 1995; Picton et al., 1971). Recent research posited that 
distractor processing is not merely collateral to attentional sampling of 
targets but may follow its own dynamics (Schneider et al., 2018; 
Wöstmann et al., 2019, 2020). The behavioural detriments induced by 
different kinds of distractors (i.e., distraction) and the neuro-cognitive 
mechanisms that counteract distraction (i.e., suppression) have been 
studied in some detail (Bonnefond and Jensen, 2012; Geng and 
DiQuattro, 2010; van Moorselaar et al., 2020; Weisz et al., 2020; 
Wöstmann et al., 2019). However, the temporal dynamics and the 
neurobiological basis of the proneness to distraction (i.e., distractibility) 
are largely unknown. 

Distractibility has long been neglected in the theoretical formulation 
of rhythmic attention. Originally assumed to be static (Posner et al., 
1980), the attentional spotlight was proposed to be blinking at a sub
second time scale in a theta-like rhythm (i.e., 3 – 8 Hz) (Buschman and 
Kastner, 2015; Fiebelkorn and Kastner, 2019). Behaviourally, it is 
manifested via the waxing and waning of behavioural performance in 
target selection (Fiebelkorn et al., 2013; Ho et al., 2017; Kubetschek and 

Kayser, 2021; Landau and Fries, 2012; Plöchl et al., 2022) or working 
memory (Schmid et al., 2022; ter Wal et al., 2021) performance at 
similar frequencies. However, the temporal dynamics outside of the 
attentional spotlight are not well understood. While previous research 
studied how distractibility unfolds on relatively long temporal scales of 
minutes (i.e., during an experimental session (Forster and Lavie, 2014)) 
or years (i.e., across stages of development (Campbell et al., 2012; 
Kannass et al., 2006)), we found preliminary evidence for fluctuating 
distractibility on shorter timescales following rhythmic presentation of 
auditory targets (Wöstmann et al., 2020). To isolate distractibility dy
namics from rhythmic entrainment or preparatory suppression, we here 
employ a design that uses non-rhythmic stimuli and distractors that 
occur unexpectedly. 

A central prediction of rhythmic attention is that the phase of slow 
neural oscillations explains fluctuations in behaviour (VanRullen, 
2016). This prediction is based on the notion that rhythmic attention 
arises from the periodic excitability of the attention-related brain 
network (Fiebelkorn and Kastner, 2019; VanRullen, 2016). In the human 
brain, theta neural phase (3 – 8 Hz) is assumed to reflect 
moment-to-moment changes in neural excitability (Lakatos et al., 2005). 
Theta phase in brain regions beyond sensory cortices, such as 
fronto-parietal regions and the hippocampus, has been associated with 
fluctuations in target detection (Helfrich et al., 2018) and working 
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memory encoding (Rutishauser et al., 2010; Siegel et al., 2009), 
respectively. While previous research has related distractibility to 
supra-modal regions in frontal (Chao and Knight, 1995; Wais et al., 
2012) or parietal (Kanai et al., 2011) cortex, it is unclear whether and in 
which networks the momentary neural dynamics may subserve the 
waxing and waning of distractibility. 

Here, we ask if the brain spontaneously alternates between states of 
higher and lower distractibility and whether such fluctuations have the 
potency to explain behavioural consequences of distraction. If so, we 
would expect to observe a brain-behaviour relation between the pre- 
distractor brain state and the distractor-induced detriment in task per
formance. To this end, we employed a pitch discrimination task wherein 
an auditory distractor could occur at variable and unexpected times in- 
between two target tones. We probed this research question in the 
auditory modality as temporal information is especially important to 
auditory attentional selection (Shamma et al., 2011). During the task, 
participants had to identify whether the two target tones were the same 
or different in pitch (Fig. 1A). The distractor was a fast-varying, 25-Hz 
modulated sequence of tones that differed in pitch, which allowed us 
to extract its evoked 25-Hz neural response (Ding and Simon, 2009). 

We used behavioural sensitivity and distractor-evoked neural 
response as the behavioural and neural proxies of distraction. Behav
iourally, perceptual sensitivity was calculated as an indirect measure of 
distraction: The more distracted, the lower the sensitivity in pitch 
discrimination should be. Neurally, we extracted the amplitude of the 
distractor-evoked event-related potential (ERP) at 25 Hz, which corre
sponded to the modulation rate of the frequency-modulated distractor 
tone sequence. Although these post-distractor measures may not solely 
reflect distractibility but also other distractor-related processes (e.g., 
suppression), we should observe temporal fluctuations of the two mea
sures if distractibility exhibits temporal dynamics. If there is a brain- 
behaviour relation in the temporal fluctuations in distraction, we 
should also observe temporal co-fluctuations between the two measures. 
Furthermore, we aimed to unveil the neural origins of the distractibility 
dynamics. If a brain region is involved in the momentary changes in 
distractibility, we should observe a relationship between the pre- 

distractor phase of neural oscillations in that region and the fluctua
tions in behavioural performance. 

A total of 17,280 behavioural and neural responses in the electro
encephalogram (EEG) in N = 30 participants revealed that behavioural 
sensitivity and distractor-evoked neural responses fluctuated in sync 
across distractor onset times in ~3 – 5 cycles per second. Critically, pre- 
distractor theta phase in left inferior frontal and insular cortex regions 
explained behavioural performance fluctuations. These effects were 
absent in trials without distractors, reinforcing their specificity to 
distractor-related neural processing. 

2. Material and methods 

2.1. Participants 

Thirty participants (20 females, 10 males; mean age = 23.67, SD =
3.56) took part in the EEG experiment. They provided written informed 
consent and were compensated by either €10/hour or course credit. 
Participants were right-handed according to the Edinburgh Handedness 
Inventory (Oldfield, 1971) (mean score = 92), with self-reported normal 
hearing, normal or corrected-to-normal vision, and no psychological or 
neurological disorders. All procedures of the current study were 
approved by the ethics committee of the University of Lübeck. 

2.2. Stimuli and procedure 

Participants performed a pitch discrimination task wherein they 
decided whether the first (tone 1) and the second (tone 2) target tone in 
a trial were the same or different in pitch. Prior to the experiment, they 
were instructed to answer as accurately and as fast as possible. The 
target tones were 75 ms long pure tones with 5 ms rise and fall periods. 
In each trial, the frequencies of tone 1 were randomly selected between 
musical note A#3 (233 Hz) and G#5 (830.6 Hz), while that of tone 2 
was either the same (50%) or different (higher or lower, 25% each) in 
frequency compared to tone 1. 

The pitch difference between tone 1 and tone 2 was titrated for each 

Fig. 1. Experimental design and behavioural 
results. A) Schematic of a distractor-present 
trial. Participants were instructed to indicate 
whether the two target tones (grey) were the 
same (probability = 50%) or different (second 
tone higher, probability = 25%; or lower, 
probability = 25%) in pitch. A 10-tone-pip 
distractor sequence (white) with a 25-Hz tem
poral structure (i.e., 40-ms tone-pip duration; 
total duration 400 ms) was presented at one of 
the 24 distractor onset times (dashed lines). In 
distractor-absent trials, no distractor was pre
sented. B) Behavioural results comparing 
distractor-present and -absent conditions. Col
oured circles indicate single-subject data. Insets 
show bar graphs of perceptual sensitivity (left 
panel) and criterion (right panel) for distractor- 
present (solid bar) and distractor-absent 
(gradient bar) conditions, respectively. Error 
bars show ± 1 SEM. ** p < 0.01. *** 
p < 0.001.   
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participant with an adaptive task (see below). The offset-to-onset in
terval between tone 1 and tone 2 was 1550 ms. Each distractor stimulus 
comprised 10 consecutive pure tones with 40 ms duration (400 ms in 
total). The frequencies of the pure tones in each distractor stimulus were 
randomly selected among the 12 tones between A#3 and G#5 with 
whole tone steps (A#3, C4, D4, E4, F#4, G#4, A#4, C5, D5, E5, F#5, 
and G#5), with the constraint that there would be no repetition between 
consecutive tones. Each of the 12 tone frequencies appeared at each of 
the 10 positions with equal probability across trials. 

In-between the two target tones, a distractor was presented in 50% of 
trials (distractor-present condition) and no distractor was presented in 
the remaining trials (distractor-absent condition). The inclusion of 
distractor-absent trials serves two purposes. First, we could verify that 
the distractors had the potency to distract by comparing behavioural 
performance for distractor-present versus distractor-absent trials 
(Wöstmann et al., 2022). Second, participants could not anticipate 
whether or when a distractor would occur in a given trial, which elim
inated potential effects of such anticipation on behavioural performance 
(Grabenhorst et al., 2021) or pre-stimulus neural activity (Dürschmid 
et al., 2018; Herbst et al., 2022; Stefanics et al., 2010). The distractor 
was a tone sequence which consisted of 10 40-ms tone pips, thus 
creating a 25-Hz temporal structure (total duration: 400 ms). 

In the distractor-present condition, the distractor was presented at 
one of 24 distractor onset times (0–1150 ms, 50-ms steps, relative to the 
offset of tone 1), which was selected at random on each trial. The 
distractor-absent trials were randomly assigned to the 24 distractor 
onset times. Specifically, for each distractor-absent trial, a distractor 
onset time was assigned as in the distractor-present trial. A distractor is 
however not presented during stimulus presentation in the distractor- 
absent condition. The time of "distractor onset" in a distractor-absent 
trial, therefore, refers to the time when a distractor would have been 
presented in that trial. 

After the offset of target tone 2, participants had a 2000 ms response 
time window. After the presentation of tone 2, a prompt was shown on 
the screen asking if the two target tones were the same or different in 
pitch (“same” or “different”?). Participants were only allowed to 
respond after the presentation of tone 2. Any button press beforehand 
was thus not recorded. To avoid potential temporal predictability effects 
of the onset of the next trial, the inter-trial intervals were randomly 
selected from a truncated exponential distribution (mean = 1460 ms), 
ranging between 730 and 3270 ms. 

The trial order was pseudo-randomized with no repetition in tone 1 
frequency and distractor onset for any two consecutive trials. In total, 
there were 12 trials for each unique condition (distractor-present/absent 
x distractor onset x same/different target pitch) and 1152 trials for the 
whole experiment. All auditory materials were presented via Sennheiser 
headphones (HD 25–1 II). Responses were made using a response box 
(The Black Box Toolkit). The assignment of buttons to the response 
options (“same” or “different”) was counterbalanced across participants. 
Stimuli were presented via Matlab (MathWorks, Inc., Natick, USA) and 
Psychtoolbox(Brainard, 1997). The auditory stimuli were presented at 
approximately 70 dB SPL. 

2.3. Adaptive staircase procedure 

Prior to the main experiment, each participant’s threshold for the 
pitch discrimination task was titrated using an adaptive staircase pro
cedure, implemented in the Palamedes toolbox (Prins and Kingdom, 
2018) for Matlab. For the initial 11 participants, the threshold was 
titrated to an approximate accuracy of 70.7%. As the overall accuracy 
was relatively high even after the adaptive staircase procedure for these 
11 participants (mean = 79.59%, SD = 10.43%), the final 16 partici
pants performed an adaptive procedure to yield approximately 65% 
accuracy instead. Due to technical issues, performance of the remaining 
three participants was tracked at 35% accuracy. As all relevant statis
tical analyses in the present study are within-subject, and as paired 

t-tests (2-tailed) comparing the behavioural performance between 
distractor-absent and distractor-present conditions were significant with 
(t29 = 8.11, p < 0.001) and without (t26 = 9.41, p < 0.001) these par
ticipants, their data were included in the final analysis. 

Each participant went through the adaptive staircase procedure two 
to three times, depending on the stability of the tracked threshold. The 
range of frequencies used in the adaptive task was the same as that used 
in the main experiment (i.e., 233–830.6 Hz). There were in total 30 
trials for each run of the adaptive staircase procedure with an initial 
pitch difference of 100 cents (i.e. 1 semitone) between tone 1 and 2. The 
minimum and maximum pitch difference possible in the task was 2 cents 
and 2000 cents, respectively. For the procedure which tracked perfor
mance at ~70.7%, a two-down one-up procedure was used. Specifically, 
the pitch differences would decrease in steps of 10 cents if participant 
responded correctly (i.e., different) for 2 consecutive trials, or increase 
in steps of 10 cents if participant responded incorrectly (i.e., same). For 
the procedure which tracked performance at ~65% procedure, the pitch 
differences would decrease in steps of 7 cents if participant answered 
correctly or increase in steps of 13 cents if they answered incorrectly. 
The pitch difference used in the main experiment was calculated by 
averaging the final 10 trials in the tracking run which converged to the 
most stable threshold, determined by visual inspection, in the ~70.7% 
procedure. The same procedure was used to average the final 6 trials in 
the ~65% procedure. 

Overall accuracy averaged across all participants in the actual 
experiment was 73.58% (SD = 12.12%). For participants tracked to 
65%, the final threshold ranged from 22.5 to 269.2 cents. For partici
pants tracked to 70.7%, the final threshold ranged from 35 to 180 cents. 
The average threshold across participants was 95.4 cents and the stan
dard deviation 77.4 cents. Participants with a higher level of tracked 
accuracy performed better in the main experiment (t28 = 3.66, 
p = .001). 

2.4. Behavioural data analysis 

To understand how distractors affect pitch discrimination perfor
mance in the framework of signal detection theory, we calculated 
sensitivity (d’) and criterion (c) separately for distractor-present and 
-absent conditions, using the Palamedes toolbox (Prins and Kingdom, 
2018) and the following formulas: 

Sensitivity = z (Hit rate) – z (False alarm rate). (Formula 1) 
Criterion = –0.5 * (z (Hit rate) + z (False alarm rate)) (Formula 2) 
A hit was defined as the “different” response when the two tones 

were different in pitch, and a false alarm as the “different” response 
when the two tones were the same in pitch. Extreme values (0 or 1) of 
Hit rate or False alarm rate were adjusted (Macmillan and Kaplan, 
1985): A rate of 0 was adjusted by dividing 1 by the number of trials 
multiplied by 2; while a value of 1 was adjusted by subtracting the same 
value from 1. Paired samples t-tests (2-tailed) were used to compare 
sensitivity and criterion in distractor-present versus -absent conditions. 

To study the effect of distractor onset times on behavioural measures 
in the distractor-present condition, sensitivity for each distractor onset 
time was calculated, resulting in a behavioural time course as a function 
of distractor onset time for each individual participant (see Figs. S1 & 
S2). 

2.5. EEG recording and pre-processing 

The experiment was conducted in an electrically shielded sound- 
attenuated room. A modified 10–20 international system with 64 Ag/ 
Ag-Cl electrodes was used to record the EEG with a sampling rate of 
1000 Hz (actiCHamp, Brain Products, München, Germany). The EEG 
recordings were band-pass filtered online from direct current (DC) to 
280 Hz. TP9 was used as the online reference and FPz as the ground 
electrode. Impedances were kept below 20 kOhm for all but one 
participant. 
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Matlab R2018a (MathWorks, Inc., Natick, USA) and the Fieldtrip 
toolbox (Oostenveld et al., 2011) were used to pre-process and analyse 
EEG data. The continuous EEG data were filtered (high-pass, 1 Hz; 
low-pass, 100 Hz) before they were segmented into epochs (− 2 to 2.5 s) 
time-locked to tone 1 onset. Independent component analysis (ICA) was 
used to identify and reject components corresponding to artefacts such 
as eye blinks, eye movements, and muscle activity (average percentage 
of components removed = 26.46%, SD = 8.89%). Afterwards, EEG data 
were re-referenced to the average of all electrodes. Epochs with ampli
tude changes > 160 microvolts were rejected (average percentage of 
epochs removed = 1.35%, SD = 2%). 

To obtain distractor-evoked neural responses, data were re-epoched 
to the onset of the distractor (− 1 to 1 s) with a 200 ms baseline period 
before distractor onset (i.e., − 200 to 0 ms). Epochs belonging to the 
same conditions (distractor-present/absent) and distractor onset time (0 
– 1150 ms, 50-ms steps) were then averaged into ERP waveforms. The 
spectral amplitude of distractor-evoked responses at 25 Hz, which cor
responds to the temporal structure of the distractor, was extracted using 
FFT on the ERP waveform in the time window from 0 to 520 ms after 
distractor onset. The frequency spectrum of the distractor-evoked ERP 
waveform shows a distinct peak of the spectral amplitude at 25 Hz 
(Fig. S3; Donoghue et al., 2020). Spectral amplitude was averaged across 
electrodes F1, Fz, F2, FC1, FCz, and FC2. For each participant, the 24 
spectral amplitudes, corresponding to the 24 distractor onset times, 
resulted in a neural time course of distractor processing as a function of 
distractor onset time (see Figs. S1 & S2). 

We chose the spectral amplitude of distractor-evoked responses at 
25 Hz instead of N1 amplitude as the neural measure of distraction for 
two main reasons. First, the distractor-evoked ERP amplitude at 25 Hz 
reflects the evoked neural responses to all 10 distractor tones in the 
distractor tone sequence, which would have a higher signal-to-noise 
ratio compared to the N1 amplitude that essentially reflects the neural 
response to the distractor-sequence onset. Second, the difference in the 
N1 component across distractor onset time is not limited to amplitude, 
but also applies to latency and morphology (see Fig. S4). Modulation of 
the N1 component may reflect multiple components, such as deviance 
detection (Wang et al., 2008) or the encoding of tone 1 for trials with 
early distractors. Hence, distractor-evoked responses at 25 Hz were 
deemed a more appropriate and more specific neural proxy of distrac
tion in the current study. 

Distractor-evoked inter-trial phase coherence (ITPC) was also 
calculated across frequencies (1 – 10 Hz, 1-Hz steps) and time windows 
(− 0.2 to 0.7 s, 0.05-s steps) for each electrode. First, Fourier coefficients 
were calculated (using windows with a fixed length of 0.5 s; hanning 
taper). Then, the complex Fourier coefficients were divided by their 
magnitude and averaged across trials. ITPC was calculated by taking the 
absolute value (i.e., magnitude) of the average complex coefficient. 

2.6. Modulation of neural and behavioural measures by distractor onset 
time 

To test whether and how distractor onset time modulates neural and 
behavioural measures, we used linear mixed-effect models with sine- 
and cosine-transformed distractor onset time, similar to Wöstmann et al. 
(2020). This method outperforms other methods for studying the phasic 
modulation of behavioural and neural responses (Zoefel et al., 2019) and 
has also been used previously (Wöstmann et al., 2020) to extract tem
poral fluctuations in the vulnerability of working memory to distraction. 
A quadratic trend was observed in the behavioural time course in Fig. 2A 
as the earliest and latest distractors were most distracting due to their 
temporal proximity to the target tones. For time courses of sensitivity 
and spectral amplitude of the distractor-evoked ERP at 25 Hz separately, 
we first subtracted the individually fitted quadratic trend (computed 
with the polyfit function in Matlab) from the original time course for 
each participant (see Figs. S1 & S2) as the quadratic trend was not of 
interest in the current study (Huang et al., 2015). 

Then, we designed sine- and cosine- transformed distractor onset 
time vectors using the following formulas, 

Sine predictor = sin (2 * π * f * distractor onset time). (Formula 3) 
Cosine predictor = cos (2 * π * f * distractor onset time) (Formula 4) 
where f denotes the frequency of interest (0.5 – 8 Hz, 0.5-Hz steps). 

Next, we regressed the detrended sensitivity and spectral amplitude of 
ERP time courses on sine and cosine predictors using linear mixed 
models (using the fitlme function in Matlab) for each frequency of in
terest using the following formulas: 

z(sensitivity) ~ z(sine predictor) + z(cosine predictor) + (1|partici
pant). (Formula 5) 

z(25-Hz ERP) ~ z(sine predictor) + z(cosine predictor) + (1|partic
ipant) (Formula 6) 

Spectral magnitude for each frequency was computed by taking the 
square root of the sum of squared beta coefficients of sine and cosine 
predictors: 

Spectral magnitude = sqrt (sine coef2 + cosine coef2). (Formula 7) 
Statistical significance of the spectral magnitude was determined by 

comparing the spectral magnitude of the empirical data with the 95th 
percentile of a permutation distribution, which was generated by shuf
fling the original behavioural/neural time course and performing the 
same analysis for 5000 times. 

To test whether sensitivity and spectral amplitude of the distractor- 
evoked ERP at 25 Hz are co-modulated, for each participant, cross- 
correlation coefficients across time lags of the two signals were ob
tained. Specifically, the cross-correlation coefficients per participant 
were obtained from the z-transformed detrended behavioural sensitivity 
time course and distractor-evoked ERP time course (Two vectors; yellow 
and blue lines in Fig. 2C). We used the matlab function xcorr(zscore 
(detrended sensitivity), zscore(detrended distractor-evoked ERP)) to 
obtain the cross-correlation coefficients. Again, we ran a similar linear 
mixed model as explained above, but this time with sine- and cosine- 
transformed time lags as predictors and used the correlation coefficients 
from the cross-correlation as the outcome measure. Spectral magnitude 
was obtained using formula 7 and statistical significance with the same 
permutation method mentioned above. 

Alternative to the shuffling-in-time approach, the frequency spectra 
of the behavioural and neural time courses in the distractor-present 
condition can be contrasted against those in the distractor-absent con
dition to test for the temporal fluctuations in the behavioural and neural 
proxies of distraction. For behavioural sensitivity, distractor-evoked 
ERP, and cross-correlation time courses, we additionally compared the 
spectral magnitude between distractor-present and -absent conditions 
with correction for multiple comparisons (i.e., FDR correction). 

2.7. Phasic modulation of behavioural sensitivity 

To explore the role of pre-distractor neural dynamics on pitch 
discrimination performance, we examined whether pre-distractor 
oscillatory phase relates to behavioural sensitivity. To this end, we 
examined the quadratic fit of sensitivity as a function of neural phase in 
source space. 

First, we implemented the source analysis using the Fieldtrip 
toolbox. A standard volume conduction model and standard electrode 
locations were used to calculate the leadfield matrix with 10-mm reso
lution. We applied the linearly constrained minimum variance (Van 
Veen et al., 1997) (LCMV) beamformer approach on the 10 Hz lowpass 
filtered data centred around distractor onset (− 1 to 1 s). We calculated a 
common filter including all trials by calculating the covariance matrix 
estimates. There were in total 2015 source locations inside the brain. 

Second, a quadratic fit analysis resolved by frequency and time 
probed the spectral and temporal specificity of the phasic modulation of 
perceptual sensitivity. To obtain trial-wise phase values for each source 
location, the following procedure was implemented for each trial in each 
source location: First, the single-trial EEG time course was projected into 
the source space using the common filter. Then, a sliding window (0.4 s 
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duration; moving in 50-ms steps from –0.3 to +0.3 s relative to dis
tractor onset) was employed to transform the data into the frequency 
domain (using FFT). Note that the time point of the sliding window 
refers to the mid-point of each time window. For instance, the time 
window centred at − 0.3 included data from − 0.5 to − 0.1 s. The 
respective phase value of each frequency (2.5 – 8 Hz in 0.5-Hz steps) was 
then calculated using the angle function in MATLAB. The phase values of 
all trials were binned into 9 bins of equal size, ranging from -pi to pi, 
followed by a calculation of sensitivity for each bin. The quadratic fit of 
sensitivity across phase bins was estimated using the polyfit function 
(order = 2) in MATLAB. As a result, we obtained a quadratic fit index for 
each source location, frequency, and time of interest. 

The choice of the quadratic fit analysis rather than Kullback-Leibler 
divergence (i.e., KL divergence), which captures potential patterns 
beyond the quadratic trend, is supported by the following reasons: First, 
the quadratic fit analysis is more specific than KL divergence as it only 
captures cyclic modulations of sensitivity by neural phase. KL diver
gence captures the deviation in the distribution of sensitivity by neural 
phase regardless of the pattern of the phase dependence (see Fig. S5). 

Second, when doing the quadratic fit analysis on one fixed time 
window only, the quadratic fit may fail to capture the phasic relation
ship that manifests as a sine wave function. We circumvented this po
tential caveat by running a time-resolved quadratic fit analysis. By 
shifting the analysis window in time, we are able to capture cyclic 
modulations with different phase shifts. 

We used a source-level cluster-based permutation test (Maris and 
Oostenveld, 2007) to find significant clusters in voxel-frequency-time 
space that would exhibit phasic modulation of sensitivity. 
Dependent-samples t-tests were used to contrast quadratic fit co
efficients against zero, followed by clustering of adjacent bins with 
significant effects in voxel-frequency-time space. To derive cluster 
p-values, summed t-values in observed clusters were tested against 5000 
permutations with shuffled condition labels (two-tailed). 

To demonstrate that the significant cluster found in the above 
analysis does not primarily originate from auditory cortex, we localised, 
for comparison, the distractor-evoked inter-trial phase coherence (ITPC) 
at 3 – 7 Hz, strongly assumed to emerge at least to large degrees from the 
supratemporal plane and auditory cortex (Koerner and Zhang, 2015; 
Mayhew et al., 2010; Oya et al., 2018), with the following procedure for 
each voxel: For each trial, we projected the time series EEG data into 
source space using the same common filter as in the analysis on the 
phasic relationship with behaviour. Then, we transformed the 
source-projected data (0 – 300 ms after distractor onset) to the fre
quency domain using FFT. The same calculation as on the sensor level 
was used to calculate the ITPC for each frequency. ITPC across fre
quencies 3 – 7 Hz were then averaged to obtain one distractor-evoked 
ITPC value for each voxel. 

One may ask how the dynamics in distractibility relate to rhythmic 
attentional sampling. As the current study mainly focuses on distracti
bility dynamics, we did not use the dense sampling approach to vary 
target onset time. Hence, we cannot test for the endogenous dynamics in 
attentional sampling. Nevertheless, if the phase dependence of 
distractibility is indeed an anti-phase version of the phase dependence of 
attentional sampling, we should observe a quadratic phasic relationship 
between the phase of theta neural oscillations before tone 2 onset and 
behavioural sensitivity, which would have an inverse pattern compared 
to the quadratic trend found for pre-distractor neural phase. Further
more, the phasic relationship should be observed in the same brain re
gions and frequencies as the relation between neural phase and 
distractibility. To test this hypothesis, we ran the same quadratic fit 
analysis with the neural phase before tone 2 onset for distractor-present 
and -absent trials, separately. We restricted the analysis to the fre
quencies and time windows where we found the significant positive 
cluster in the main analysis (Fig. 3C). We ran a cluster permutation test 
within the frequencies and time windows with the same parameters as 
the main analysis on the quadratic fits. 

3. Results 

In the current electroencephalography (EEG) and behavioural study, 
we aimed at (1) uncovering the temporal fluctuations in distraction, and 
(2) exploring the relationship between such fluctuations and momentary 
neural phase at similar frequencies. To this end, we varied the onset time 
of an auditory distractor that was presented in-between two to-be- 
compared tones in a variant of a pitch discrimination task. 

3.1. Distractors interfere with pitch discrimination performance 

To examine the potency of the distractors to distract, we compared 
participants’ sensitivity and criterion (response bias) in the pitch 
discrimination task between distractor-present and -absent trials. Par
ticipants were less sensitive to the pitch difference (t29 = − 8.11, 
p = <0.001, Cohen’s d = − 1.48), and had a more conservative response 
criterion (i.e., more “same pitch” responses; t29 = 2.83, p = 0.008, 
Cohen’s d = 0.52) in distractor-present trials (Fig. 1B). 

As the pitch difference presented for each participant differed 
depending on participant’s threshold in the adaptive task, we tested 
whether participants’ thresholds explain the susceptibility to distrac
tion, which is quantified as the difference in behavioural sensitivity 
between distractor-absent and distractor-present conditions. Partici
pants’ thresholds did not explain the degree of distraction (t28 = − 0.31, 
p = .76). 

3.2. Behavioural and neural measures of distraction co-fluctuate across 
time 

Does the impact of distraction on neural activity and goal-directed 
behaviour exhibit fluctuations across time? To test this, we varied dis
tractor onset time and examined whether behavioural (i.e., sensitivity;  
Fig. 2A, yellow) and neural measures of distraction (i.e., distractor- 
evoked ERP; Fig. 2A, blue) would show modulations at frequencies up 
to 8 Hz. To examine temporal fluctuations of distraction, we used linear 
mixed-effects models with sine- and cosine- transformed distractor onset 
time as predictors to model the behavioural and neural time courses as 
the outcome measures. 

Fig. 2E and F show the spectral magnitude (0.5 – 8 Hz, 0.5-Hz steps) 
resulting from linear mixed models on detrended perceptual sensitivity 
(Fig. 2C, yellow) and detrended ERP amplitude (Fig. 2C, blue), respec
tively. Statistical significance was derived by testing empirical spectral 
magnitude against the 95th percentile of a permutation distribution, 
which was derived from shuffling the behavioural and neural time 
courses, respectively, 5000 times (see Methods for details). 

At the behavioural level, distractor onset time modulated sensitivity 
below 5 Hz. At the neural level, distractor onset time modulated the 
distractor-evoked ERP at 4 and 5 Hz. However, only the 5 Hz spectral 
peak in sensitivity (Fig. 2E) stayed significant after FDR correction for all 
the frequencies (fluctuations below 2 Hz reflect slow trends in the data 
and are thus not discussed here). 

Similar results were obtained in a control analysis, where temporal 
fluctuations in the behavioural and neural time courses in distractor- 
present trials were compared against distractor-absent trials (instead 
of permuted distractor-present trials; Fig. S6). 

If these periodic neural dynamics serve as the basis for the apparent 
behavioural fluctuations, we should observe the synchronization of the 
behavioural and neural time courses by a common rhythm. To test this, 
we also examined the co-modulation of sensitivity and distractor-evoked 
ERP by distractor onset time. We first calculated the cross-correlation 
coefficients of the behavioural and neural time courses for individual 
participants (Fig. 2D). We then ran a linear mixed model with the cross- 
correlation coefficient as the outcome measure and sine- and cosine- 
transformed time lag as predictors. 

Fig. 2 G shows that sensitivity and distractor-evoked ERP are co- 
modulated at 3.5 and 5 Hz. At lag 0, there was a negative correlation 
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between sensitivity and the distractor-evoked ERP, consistent with the 
notion that stronger distractor encoding (i.e., larger distractor-evoked 
ERP) corresponds to worse task performance (i.e., lower sensitivity). 
T-tests against zero on the (Fisher-z transformed) correlation co
efficients across participants show that this correlation at time lag 0 was 
close to statistical significance (Pearson’s r: t29 = − 1.85, p = .08, mean 
Pearson’s r = − 0.08; Spearman’s r: t29 = − 2.13, p = .04, mean 

Spearman’s r = − 0.10). 
As a control analysis, the same analysis pipeline was run on the data 

in the distractor-absent condition by randomly assigning a “distractor 
onset” for each distractor-absent trial, which did not reveal any signif
icant co-modulation (Fig. S7): Neither time courses of sensitivity nor 
distractor-evoked ERP were modulated by randomly assigned distractor 
onset time; time lags did not modulate the cross-correlation of these two 

Fig. 2. The analyses of behavioural and neural time courses by distractor onset time. A) Average sensitivity (yellow solid line) and 25-Hz amplitude of the distractor- 
evoked event-related potential (ERP; blue solid line) across distractor onset times. Shaded areas show ± 1 SEM across participants. Dashed lines show respective 
quadratic trends. B) Top panel: Distractor-evoked ERP waveform averaged across all distractor onset times at electrode Fz (20 – 30 Hz bandpass filtered for visu
alization purpose). Shaded grey area marks the time window used to extract the 25-Hz amplitude of the distractor-evoked ERP. Inset shows the scalp map of the 25- 
Hz amplitude of the distractor-evoked ERP (derived via an FFT on the distractor-evoked ERP waveform). Bottom panel: Distractor-evoked inter-trial phase coherence 
(ITPC) from 1 to 10 Hz and from − 0.2–0.6 s at Fz. Brain surface shows the ITPC values (frequencies: 3 – 7 Hz; time window: 0 – 0.3 s) in source space, which reflects 
the auditory response to the distractor. White outline indicates top 1% voxels with largest ITPC values. C) Detrended time courses of behavioural and neural outcome 
measures. Shaded areas show ± 1 SEM across participants. D) Solid line shows average correlation coefficients, derived by averaging single-subject cross-correlations 
of sensitivity and distractor-evoked ERP time courses, as a function of temporal lags. Shaded area shows ± 1 SEM across participants. E-G) Spectral magnitude across 
frequencies (0.5 – 8 Hz, 0.5-Hz step) for (E) detrended sensitivity, (F) distractor-evoked ERP, and (G) the cross-correlation between the two. Shaded areas show the 
95th percentile of the permutation distribution generated from 5000 permutations. Horizontal lines show statistical significance when comparing the spectral 
magnitude against the 95th percentile of the permutation distribution before FDR correction. Asterisks show the statistical significance that remained significant after 
FDR correction. 
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at any frequency. The temporal co-fluctuations of behavioural and 
neural measures of distraction at 3 – 5 Hz in distractor-present trials may 
be a manifestation of an underlying distractibility rhythm, which we 
probed into next. 

3.3. Pre-distractor neural phase in inferior frontal/insular cortex explains 
distraction 

If the human brain hosts an endogenous rhythm that underlies 
distractibility dynamics, the neural state prior to distractor onset should 
explain the participant’s momentary vulnerability to interference by a 
distractor. To test this, we studied how pre-distractor neural phase re
lates to our previously established proxy of distraction, that is, behav
ioural sensitivity. We asked when in time and in which brain network(s) 
such an endogenous rhythm underlying distractibility would show up. 

We employed source-projected EEG time courses to extract the 
quadratic relationship between the binned pre-distractor neural phase 
and perceptual sensitivity. For each trial (Fig. 3A), we first transformed a 
source-projected EEG data segment (0.4 s; sliding window) into the 
frequency domain using FFT. We then extracted neural phase for a given 
frequency (Fig. 3B). To calculate sensitivity sorted by phase bin, we first 
sorted the trials according to their phase values into 9 phase bins of 
equal size, followed by calculation of perceptual sensitivity for each bin 

(see Fig. S8 for individual participants’ sensitivity by phase bin). The 
same procedure was repeated for a range of frequencies (2.5 – 8 Hz, 0.5- 
Hz steps) and time windows (− 0.3 to 0.3 s around distractor onset, 0.05- 
s steps). A cluster-based permutation test with the dimensions time, 
frequency, and voxels, wherein the quadratic fit was tested against zero, 
revealed a positive significant cluster (Fig. 3C; the same analyses with 7, 
8, and 10 phase bins yielded comparable clusters across all dimensions 
and comparable statistical significance). The quadratic modulation of 
sensitivity by neural phase at 2.5 – 7.5 Hz was most prominent in the left 
insular and the inferior frontal cortices in the time window spanning 
~300 ms before distractor onset (cluster p-value =.026, two-tailed; see 
Fig. S9 for brain surface plots from other viewing angles). 

To test whether the significant cluster overlaps with sources of 
auditory-evoked activity in auditory cortex regions, we compared its 
source with the source of distractor-evoked inter-trial phase coherence 
(ITPC) at 3 – 7 Hz (shown also in Fig. 2B, bottom panel). Importantly, 
although the two effects were localized in proximal cortical regions 
(Fig. 3C, bottom panel), their core regions were mostly non-overlapping. 

For control, we conducted the same analysis on the distractor-absent 
trials, which revealed no significant cluster (Fig. S10). We also tested the 
relationship between the pre-distractor neural phase and the post- 
distractor neural measure of distraction (i.e., 25-Hz amplitude of the 
distractor-evoked ERP), which did not reveal a significant effect 

Fig. 3. Cluster-based permutation test results on the relationship between neural phase and behavioural fluctuations. A-B) Illustration of the source-level analysis. A) 
Example of a single-trial source-projected EEG time course. The moving window (grey) was used to transform segments of the data into the frequency domain using 
FFT. The first grey window corresponds to the first time window used in the time-resolved analysis (i.e., -0.5 to -0.1 s). B) Spectral representation of the data segment 
in (A). Phase values across frequencies were extracted and trials were binned according to their phase values into 9 phase bins for each frequency, time window, and 
source location. Bar graph shows exemplary sensitivity values calculated from the trials sorted by phase bin. A quadratic trend was fitted to the sensitivity values 
across phase bins (purple solid line). C) Results of a cluster-based permutation test, which tested quadratic fits in time-frequency-source space against zero. Top panel 
shows the t-values (df = 29) across frequencies and time windows, averaged across all the voxels belonging to the significant positive cluster. The black contour 
indicates the positive significant cluster. Right column shows individual participants’ quadratic coefficients for each frequency, collapsed across the time windows 
included in the significant cluster. Bottom row shows individual participants’ quadratic coefficients across time windows, collapsed across frequencies and voxels 
included in the significant cluster. Bottom left panel shows the cluster peak effect (3 Hz; -0.2 s), which resides mainly in left inferior frontal cortex and insular cortex. 
Only the t-values of the positive significant cluster are shown. The black contour indicates the regions with the top 1% t-values across the whole brain. The t-values 
were interpolated and projected onto MNI coordinates for visualization purposes. The white contour indicates distractor-evoked neural activity, quantified as the top 
1% inter-trial phase coherence (ITPC) in the post-distractor time window (i.e., 0 – 0.3 s) at 3 – 7 Hz (shown also in Fig. 2B). Bottom right panel shows centred 
perceptual sensitivity sorted by phase bins in the positive cluster at 3 Hz averaged across participants. Grey thin lines show individual centred perceptual sensitivity. 
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(Fig. S11). Lastly, we tested whether there is also a quadratic relation
ship between pre-tone 2 neural phase and behavioural sensitivity. While 
there was no significant cluster in the distractor-present condition (all 
p > .06), a significant positive cluster was found in the distractor-absent 
condition (p = 0.01), but in different neural regions (i.e., left lingual 
gyrus and right inferior frontal cortex) from the left insular/inferior 
frontal origins found for distractibility dynamics. Importantly, in both 
distractor-present and distractor-absent trials, there was no significant 
cluster in the left insular or inferior frontal cortex, suggesting that pre- 
tone 2 neural phase in these regions does not explain fluctuations in 
behavioural sensitivity (Fig. S12). 

4. Discussion 

The current study aimed to unravel the temporal dynamics of 
distractibility, using a pitch discrimination task with auditory dis
tractors. The eventual degree of distraction and the neural processing of 
distractors were respectively quantified by distractor-evoked perfor
mance detriments and neural responses in the human electroencepha
logram (EEG). We made a series of interesting observations. 

First, the ~3 – 5 Hz fluctuations of behavioural sensitivity across 
distractor onset time urged for the question whether the same fluctua
tions are observed in the human brain’s response to distractors. 
Consistently, we found that the distractor-evoked neural response 
covaries with behavioural sensitivity at similar frequencies. Second, 
while behavioural sensitivity and the distractor-evoked neural response 
might partly reflect post-perceptual processes (such as distractor sup
pression), we asked whether the brain hosts an endogenous oscillation 
that shapes the momentary state of distractibility. Confirming this, we 
found that pre-distractor neural phase in left inferior frontal/insular 
cortex explained rhythmic fluctuations in the momentary degree of 
distraction. 

These major findings support the notion that temporal fluctuations in 
distractibility on a subsecond time scale can be explained by slow neural 
oscillatory dynamics in a cortical network beyond the auditory cortex. 

4.1. The proneness to distraction is inherently dynamic 

The current study sheds light on the dynamics of distractibility, 
which is an important factor often neglected in previous attention 
research on distraction and suppression. The ultimate degree of detri
ment that a distractor will cause depends on two endogenous factors: the 
momentary proneness to distraction (i.e., distractibility) and the ability 
to suppress a distractor (i.e., distractor suppression). On the one hand, 
research on distractor suppression often did not disentangle the active 
suppression of distractors (Schneider et al., 2021) from variations in 
distractibility. On the other hand, research on distractibility rather 
treated it as an individual characteristic that, if at all, only changes on a 
slow temporal scale such as within an experimental session (Forster and 
Lavie, 2014) or across developmental stages (Kannass et al., 2006). The 
temporal trajectory of distractibility on a faster, subsecond, time scale 
had hitherto been left unknown. 

With distractor-evoked behavioural and neural measures, we were 
able to encapsulate the temporal trajectory of distraction, which fluc
tuates on a subsecond temporal scale consistent with the rate of rhyth
mic sampling in attention (Fiebelkorn et al., 2013; Ho et al., 2017; 
Kubetschek and Kayser, 2021; Landau and Fries, 2012) and working 
memory (Cruzat et al., 2021; Schmid et al., 2022; ter Wal et al., 2021). 
With analysis of pre-distractor neural oscillatory phase, we were able to 
trace this distractibility back to a slow neural oscillatory fluctuation in 
inferior frontal and insular cortex (see below for an in-depth discussion). 
Participants could not anticipate whether or when the distractor would 
occur, thereby not being able to engage in preparatory suppression of 
the upcoming distractor (Geng, 2014). The combined analysis of 
pre-distractor neural phase and of post-distractor neural and behav
ioural measures complementarily elucidates how the brain alternates 

between states of higher and lower distractibility. These insights are 
essential for the inclusion of an explicit account of distraction in models 
of attention in psychology and neuroscience. 

Fluctuations of distractibility at 3 – 5 Hz in the current study unveil 
the dynamic nature of attention, which was underappreciated in the 
static spotlight metaphor of attention (Posner et al., 1980). The atten
tional sampling of to-be-attended external stimuli (Fiebelkorn et al., 
2013; Ho et al., 2017; Kubetschek and Kayser, 2021) or internal memory 
representation (Cruzat et al., 2021; Schmid et al., 2022; ter Wal et al., 
2021) has been shown to exhibit temporal fluctuations at similar fre
quencies. The waxing and waning of attentional sampling may index 
inter-areal coordination between the attentional network and the sen
sory areas of the brain (Dugué and VanRullen, 2017), which is associ
ated with the alternation between stronger and weaker attentional 
sampling over time (Fiebelkorn and Kastner, 2019). With much evi
dence on the temporally dynamic nature of the attentional spotlight, 
however, there is a lack of theoretical foundation for the inherent dy
namics of cognition outside of this spotlight (Lui and Wöstmann, 2022). 
With the observed fluctuations of distractibility in the theta frequency 
range, an extension of the existing theory of dynamic attentional sam
pling to temporally dynamic distraction is warranted. 

While our results demonstrate that distractibility exhibits temporal 
fluctuations, they do not reveal whether such fluctuations are inde
pendent of the fluctuations found in the attentional sampling of memory 
content. Participants in the current study had to maintain the memory 
representation of the pitch of tone 1 during a trial. The theta fluctuations 
found in the current study thus may represent the sampling of the in
ternal representation of tone 1, with higher distractibility hypothetically 
occurring during the phase of reduced sampling of the memory repre
sentation. Alternatively, observed theta fluctuations may represent in
dependent fluctuations in the proneness to distraction. Previous 
neuroimaging studies found that the suppression of distracting inputs 
may be independent of the sampling of attended inputs (Noonan et al., 
2016; Schneider et al., 2018; Wöstmann et al., 2019). Future in
vestigations may manipulate both the target and distractor onset time to 
examine the relationship between the temporal fluctuations underlying 
attentional sampling and distractibility. 

Of note, as the main analysis approach used here (comparing 
empirical time courses to time courses that were shuffled in time) does 
not distinguish between periodic and aperiodic temporal structure 
(Brookshire, 2022), we are careful to conclude from the respective re
sults alone that distractibility is rhythmic. However, it does not negate 
the possibility that there is a periodic temporal structure in distracti
bility. The premise of rhythmic cognition is that the apparent fluctua
tions of performance reflect the periodic orchestration between brain 
regions (Fiebelkorn and Kastner, 2019). In addition to fluctuations in 
behavioural performance, neural evidence is therefore essential to 
elucidate the rhythmicity of cognition (Fiebelkorn, 2022; Wöstmann, 
2022). The current study shows a correspondence between slow neural 
oscillatory phase and behaviour (using an analysis approach that does 
not employ shuffling-in-time), consistent with the notion that distract
ibility is rhythmic. Future advancements in the analysis approach to 
directly test the periodicity in cognition will further strengthen our 
understanding of the distractibility dynamics. 

While not all spectral peaks in the analyses survive FDR correction, 
all analyses with different outcome measures (i.e., behavioural sensi
tivity, distractor-evoked ERP, and cross-correlation), different contrasts 
(i.e., compared against permutation distribution or against distractor- 
absent condition), and with different analysis methods (i.e., linear 
mixed model with sine- and cosine-transformed distractor onset time or 
fast-Fourier transform) show consistent peaks between 3 and 5 Hz. 

4.2. Neural dynamics of distractibility originate in inferior frontal/insular 
cortices 

The localisation of neural phase effects underlying distractibility 
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dynamics beyond auditory cortex regions might suggest that the 
proneness to distraction is supra-modal. In research on visual distrac
tion, brain regions in frontal and parietal cortices have been associated 
with distractor interference in lesions (Chao and Knight, 1995) or 
transcranial magnetic stimulation (Kanai et al., 2011; Wais et al., 2012) 
studies. The functional connectivity between the left inferior frontal 
cortex and hippocampus is associated with the disruptive influence of 
task-irrelevant visual distraction on working memory (Wais et al., 
2010). While the current study examined distractibility in the auditory 
modality, the neural origins found here overlap with previous research 
on distraction in the visual modality. 

The observed relationship between perceptual sensitivity and the 
inferior frontal/insular theta phase suggests that fluctuations in 
distractibility may be related to the cognitive control of working mem
ory. The left inferior frontal cortex is assumed to be critical to the res
olution of competition between the maintenance of goal-relevant 
information and the interference from external distraction (Irlbacher 
et al., 2014; Tops and Boksem, 2011; Wais et al., 2012). The anterior 
insula is theorised as a gatekeeper to the brain regions responsible for 
goal-related cognitive control (Molnar-Szakacs and Uddin, 2022), and is 
part of the ventral attention system (Eckert et al., 2009). Specifically, the 
insular cortex may support the switching between networks important 
to internally directed and externally directed cognition, respectively 
(Uddin, 2015). The frontal theta rhythm is associated with cognitive 
control (Berger et al., 2019; Cavanagh and Frank, 2014; Kamarajan 
et al., 2004) and the prioritization of relevant memory representation 
(Riddle et al., 2020). Taken together, theta oscillations in the inferior 
frontal and insular cortices may reflect the orchestration of the cognitive 
control system to maintain the internal memory representation and 
suppress potentially distracting external inputs. 

We did not observe a corresponding phasic relationship between pre- 
tone 2 neural phase and behavioural sensitivity in the current study. 
Nevertheless, the absence of evidence here should not be taken as the 
evidence of absence as we did not manipulate target onset time after 
phase reset, which is crucial for unveiling any dynamics in auditory 
attentional sampling (Ho et al., 2017; Zoefel and Heil, 2013). To further 
understand the relationship between distractibility dynamics and the 
dynamics in attentional sampling, future studies should manipulate the 
onset time of targets and distractors to examine if attentional sampling 
and distractibility fluctuate at similar frequencies with different phases. 

Against what might have been expected, pre-distractor theta phase 
did not predict fluctuations in the distractor-evoked neural response 
(Fig. S11). There are two salient reasons why the present data do not 
bear out a direct correspondence between pre-distractor neural phase 
and post-distractor neural response. First, the distractor-evoked ERP 
may not only reflect endogenous distractibility, but also other cognitive 
operations that contribute to the final degree of distraction, such as 
reactive suppression (Feldmann-Wüstefeld and Vogel, 2019; Hickey 
et al., 2009; B. Wang et al., 2019) or stimulus prediction (Volosin and 
Horváth, 2014). Distractibility dynamics may thus only account for a 
small amount of variance in the distractor-evoked ERP at 25 Hz. Second, 
in contrast to the distractor-evoked ERP, the neural origins of the 
distractibility dynamics rest in regions beyond the auditory cortex. The 
involvement of non-auditory cortical regions suggests that fluctuations 
in distractibility may arise from higher-order cognitive control pro
cesses, which affect behavioural sensitivity but are not directly related to 
distractor-evoked auditory responses. 

5. Conclusions 

The present study demonstrates that human proneness to distraction 
is not uniformly distributed across time but fluctuates on a subsecond 
timescale in cycles of ~3 – 5 Hz. In the brain, time windows of higher 
distractibility are coined by stronger neural responses to distractors. 
Furthermore, slow neural phase in left inferior frontal/insular cortex 
regions explains fluctuations in distractibility. These results unravel the 

temporal dynamics of distractibility and thereby help explain human 
processing of an abundant kind of stimulus in increasingly complex 
environments, that is, irrelevant and distracting input. 
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Plöchl, M., Fiebelkorn, I., Kastner, S., Obleser, J., 2022. Attentional sampling of visual 
and auditory objects is captured by theta-modulated neural activity. Eur. J. Neurosci. 
55 (11–12), 3067–3082. https://doi.org/10.1111/ejn.15514. 

Posner, M.I., Snyder, C.R., Davidson, B.J., 1980. Attention and the detection of signals. 
J. Exp. Psychol.: Gen. 109 (2), 160–174. https://doi.org/10.1037/0096- 
3445.109.2.160. 

Prins, N., Kingdom, F.A.A., 2018. Applying the model-comparison approach to test 
specific research hypotheses in psychophysical research using the palamedes 
toolbox. Front. Psychol. 9, 1250. https://doi.org/10.3389/fpsyg.2018.01250. 

Riddle, J., Scimeca, J.M., Cellier, D., Dhanani, S., D’Esposito, M., 2020. Causal evidence 
for a role of theta and alpha oscillations in the control of working memory. e4 Curr. 
Biol. 30 (9), 1748–1754. https://doi.org/10.1016/j.cub.2020.02.065. 

Rutishauser, U., Ross, I.B., Mamelak, A.N., Schuman, E.M., 2010. Human memory 
strength is predicted by theta-frequency phase-locking of single neurons. Nature 464 
(7290), 903–907. https://doi.org/10.1038/nature08860. 

Schmid, R.R., Pomper, U., Ansorge, U., 2022. Cyclic reactivation of distinct feature 
dimensions in human visual working memory. Acta Psychol. 226, 103561 https:// 
doi.org/10.1016/j.actpsy.2022.103561. 

Schneider, D., Göddertz, A., Haase, H., Hickey, C., Wascher, E., 2018. Hemispheric 
asymmetries in EEG alpha oscillations indicate active inhibition during attentional 
orienting within working memory. Behav. Brain Res. 359, 38–46. https://doi.org/ 
10.1016/j.bbr.2018.10.020. 

Schneider, D., Herbst, S.K., Klatt, L., Wöstmann, M., 2021. Target enhancement or 
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