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A B S T R A C T

Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people 
of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming 
words (i.e., predictability gain)—a process associated with the domain-specific semantic network. When no such 
context can be used, speech comprehension in challenging listening conditions relies on cognitive control 
functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre- 
selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific 
and domain-general networks interact during speech comprehension in noise and how this may change across 
the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network 
interactions during sentence comprehension under noisy conditions with varying predictability in healthy young 
and older listeners. Relative to young listeners, older adults showed increased task-related activity in several 
domain-general networks but reduced between-network connectivity. Across groups, higher predictability was 
associated with increased positive coupling between semantic and attention networks and increased negative 
coupling between semantic and control networks. These results highlight the complex interplay between the 
semantic network and several domain-general networks underlying the predictability gain. The observed dif-
ferences in connectivity profiles with age inform the current debate on whether age-related changes in neural 
activity and functional connectivity reflect compensation or dedifferentiation.

1. Introduction

Extracting speech from a noisy acoustic stream is a fundamental 
problem that we frequently encounter in our everyday life. One strategy 

to facilitate comprehension of noisy sentences is to use the semantic 
context of a sentence to predict upcoming words (i.e., predictability 
gain). This strategy is most decisive when semantic context is highly 
predictive and intelligibility is low, but still good enough to understand 
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some fragments to guide prediction. The predictability gain can be 
commonly observed in healthy young and older listeners (Guediche 
et al., 2014; Hartwigsen et al., 2015; Obleser et al., 2007; Obleser and 
Kotz, 2010; Rysop et al., 2021, 2022).

At the neural level, the predictability gain is associated with 
increased activity in brain regions that have previously been implicated 
in semantic processes, including the left angular gyrus (AG), the left 
posterior middle temporal gyrus (pMTG) and the left inferior frontal 
gyrus (IFG; Adank, 2012; Jefferies, 2013; Golestani et al., 2013; Obleser 
and Kotz, 2010; Rysop et al., 2021). In addition, increased activity in 
regions of the cingulo-opercular (CO) network, including the left and 
right anterior insula (aIns) and the pre-supplementary motor area 
(pre-SMA), is frequently observed and has been associated with 
increased demands when speech signals are compromised (Alavash 
et al., 2019; Alavash and Obleser, 2024; Rogers and Peelle, 2022; Vaden 
et al., 2013). In older adults, there is scarce evidence regarding the 
neural underpinnings of speech processing in difficult listening situa-
tions. The ability to decode speech from a noisy signal relies on general 
cognitive functions, such as working memory and processing speed 
(Dryden et al., 2017; Rönnberg et al., 2013), which are known to decline 
with age (Salthouse, 1996; Salthouse et al., 2003). On the other hand, 
the predictability gain relies on semantic resources, which remain 
relatively stable or increase with advancing age (Verhaeghen, 2003; 
Wingfield and Stine-Morrow, 2000). Likewise, age-related changes in 
neural activity of semantic regions are subtle and tend to occur in 
combination with altered behavioural performance (Hoffman and 
Morcom, 2018). Most neuroimaging studies that investigate age-related 
differences during speech in noise comprehension do not include a 
manipulation of sentence predictability in their experimental paradigm 
but focus on general cognitive demands. For instance, Erb and Obleser 
(2013) found increased levels of activity in the cingulo-opercular 
network in older adults who performed an overt repetition task with 
sentences of low predictability. The degree of upregulation predicted 
comprehension success and was interpreted in terms of the 
Compensation-Related Utilisation of Neural Circuits Hypothesis 
(CRUNCH), suggesting that older adults show relatively higher levels of 
neural activity compared to young adults to achieve similar performance 
(Reuter-Lorenz and Cappell, 2008). As predictability was not manipu-
lated in this study, it remains unclear how sentence predictability affects 
neural activity in older adults and if the observed age differences were 
due to differences in task difficulty. Indeed, when controlling for task 
difficulty by individualised adjustment of intelligibility levels, older 
listeners showed strikingly similar task-related activity in regions of the 
CO network as compared to young listeners (Rysop et al., 2022). It is 
further a matter of debate whether age-related differences in 
task-related activity reflect compensation, as claimed by proponents of 
the CRUNCH theory, or changes in the relative balance from specialized 
(domain-specific) to less specialized (domain-general) regions, as sug-
gested by the dedifferentiation hypothesis (Li et al., 2001).

At the network level, speech-in-noise processing is thought to be 
supported by interactions within and between the domain-specific se-
mantic system and the domain-general cingulo-opercular network, 
although studies targeting network-level effects and age-differences are 
rare. Using dynamic causal modelling, we have previously shown that 
high predictability of sentence-final words modulates effective connec-
tivity within the cingulo-opercular network in an inhibitory manner. 
Importantly, this inhibitory effect was correlated with better behav-
ioural performance in both young and older listeners, indicating a 
behaviourally relevant change in connectivity (Rysop et al., 2021, 
2022). Furthermore, overall connectivity between and within these two 
networks was stronger in young than older listeners. Another recent 
study investigated the relationship between successful speech compre-
hension in noise and resting-state functional connectivity in a group of 
older adults (Fitzhugh et al., 2021). Resting-state functional connectiv-
ity between the frontoparietal control network (FPCN) and the language 
network was identified as a significant network-level predictor during a 

sentence-picture matching task. The authors interpreted their finding in 
line with the theory that increased perceptual or cognitive task demand 
is supported by increased reliance on cognitive resources, such as pro-
cessing speed and working memory, putatively provided by 
domain-general networks, such as the frontoparietal control network. 
However, it remains unclear whether these results are task-dependent or 
age-dependent and if the coupling between the FPCN and the language 
network also contributes to speech comprehension when predictability 
is manipulated. Although this study suffers from several limitations, 
such as missing a control group of healthy young adults, it points to-
wards the involvement of domain-general functional networks. Indeed, 
neuroimaging studies of speech comprehension in challenging listening 
conditions often focus on selected networks of interest, disregarding the 
contributions of other large-scale functional networks known to sub-
serve general cognitive functions, such as the control networks, atten-
tion networks, or the default mode network. Thus, the contributions of 
other domain-general functional networks to speech comprehension in 
challenging listening conditions in young and older adulthood remain 
unknown.

In the present study, we aimed to overcome these limitations and 
explore the contributions of domain-general functional networks to 
speech comprehension under difficult listening conditions in healthy 
young and elderly listeners. Using a data-driven multivariate approach, 
we reanalysed previously published fMRI data (Rysop et al., 2021; 
Rysop et al., 2022). Group-wise spatial independent component analysis 
(ICA) was used to identify functional networks in younger and older 
adults. Task-related activity was analysed within these networks and 
complemented by analyses of between-network functional connectivity 
via correlational psychophysiological interaction (cPPI).

Going beyond the results reported in Rysop et al. (2021); (2022), we 
expected to find predictability-dependent effects in semantic and 
cingulo-opercular network activity, alongside age-related effects in 
domain-general network activity, consistent with the CRUNCH frame-
work (see Fig. 1D for a schematic visualization of the expected effects). 
In the exploratory analysis of functional connectivity, we expected to 
find increased coupling between the semantic network and 
domain-general networks subserving working memory processes and 
attentional demands, given the relevance of domain-general cognitive 
function for speech comprehension in challenging listening conditions 
and that this increased coupling pattern would be more pronounced in 
older adults.

2. Materials and methods

2.1. Participants

Thirty healthy young and thirty healthy middle-aged to older 
German native speakers took part in the experiment. Inclusion criteria 
were right-handedness according to the German version of the Edin-
burgh Handedness Inventory (Oldfield, 1971), no hearing difficulties or 
disorders, and no history of neurological or psychiatric disorders. 
Younger adults were included if they had self-reported normal hearing. 
Older adults were additionally screened for age-normal hearing 
(pure-tone average < 25 dB HL in the listener’s better ear) and cognitive 
impairment (Mini Mental State Examination score < 27; Folstein et al., 
1975). To ensure age-normal hearing, older participants underwent a 
hearing test (pure-tone audiometry) that was conducted in a 
sound-proof chamber using an audiometer (Oscilla SM910-B Screening 
Audiometer). Pure-tone averages were calculated separately for the left 
and right ear across frequencies from 250 kHz to 8000 kHz. Eight par-
ticipants were excluded due to excessive head movement during scan-
ning. One additional participant was excluded because of missing field 
maps, yielding a final sample size of 26 young and 25 older participants 
(Young adults: age range: 19–29 years; M = 25 years, 15 women; 
Middle-aged to older adults: age range: 50–77 years, M = 62 years, 19 
women).
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Fig. 1. Experimental design. A During the experiment, participants listened to sentences (light blue waveform) that were embedded in speech-shaped noise (grey 
waveform), while being visually accompanied by a fixation cross. At the onset of the sentence-final word, the fixation cross changed to a green traffic light, indicating 
the overt repetition phase for the participants. B The final word of the sentences was either highly (green) or lowly predictable (orange) from the sentential context. 
The signal-to-noise ratio of the experimental sentences was centred on individual speech reception thresholds (SRT50) at six intensities. C Psychometric curves were 
fitted to the proportion of correctly repeated final words (solid lines = young listeners, dotted lines = older listeners). Threshold parameters of the psychometric 
curves (indicated by the black dashed line) were extracted for each predictability condition and age group and used for brain-behaviour correlations. D We expected 
to find increased task-related activity in the semantic network when sentences were highly predictable (pred.), and increased levels of task-related activity in older 
adults in domain-general networks, consistent with the CRUNCH framework. At the level of functional connectivity, we expected increased coupling between the 
semantic and several domain-general networks during speech in noise comprehension, and that this pattern would be stronger in older adults. The expected effects 
are indicated by gray arrows.
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The present study constitutes a reanalysis of data that has been 
published earlier (for further information the reader is referred to Rysop 
et al., 2021 and Rysop et al., 2022). All participants gave written 
informed consent in accordance with the declaration of Helsinki and 
were reimbursed with 10 € per hour. The study was approved by the 
local ethics committee (University of Leipzig).

2.2. Experimental procedure

All participants took part in one fMRI session. At the beginning of 
this session, participants performed a one-up-one-down adaptive stair-
case procedure to determine their speech reception threshold (SRT), i.e., 
their ability to understand speech in noise. This step was essential, as the 
intelligibility levels of the experimental sentences were centred on each 
participant’s individual SRT. In the adaptive staircase procedure, par-
ticipants listened to 20 energetically-masked sentences with highly 
predictable endings that were not part of the experimental stimulus set. 
These sentences were presented at an initially high signal-to-noise ratio, 
which was decreased or increased in subsequent trials, depending on the 
participant’s performance on the preceding trial. Correct repetition 
yielded a drop in signal-to-noise ratio (i.e., the following trial was more 
difficult), incorrect answers yielded an increase in signal-to-noise ratio 
(i.e., the following trial was easier). This procedure was already per-
formed in the MR scanner using the same scanning protocol as in the 
main experiment to provide a comparable acoustic environment.

In the main experiment, participants listened to sentences that varied 
in intelligibility (six levels) and predictability (high versus low pre-
dictability) and performed an overt sentence repetition task. During the 
sentence presentation, a fixation cross appeared on the screen. A green 
traffic light was presented with the keyword to prompt oral repetition. 
Participants were asked to repeat the sentence, or every word they un-
derstood. In case they did not understand anything, they were asked to 
say so (i.e., say ”…”). Sentences were presented via MRI-compatible 
headphones (MR-Confon, Magdeburg, Germany). Responses were 
recorded using an MRI-compatible microphone (FOMRI-III, Opto-
acoustics, Yehuda, Israel). Detailed descriptions of the experimental 
procedure can be found in Rysop et al., (2021) and Rysop et al., (2022).

2.3. Stimulus material

Experimental sentences consisted of sentence pairs with identical 
sentence-final words but differing sentence frames providing either high 
or low semantic context for the final word. Consequently, sentence-final 
words had either a high or low cloze probability (i.e., expectancy of a 
word given the preceding context; Taylor, 1953). High cloze probability 
was generated by several pointer words that were highly associated with 
the sentence-final word (“She made the bed with new sheets”). Low 
cloze probability was provided using less associated words (“We are very 
pleased with the new sheets”). We used 216 sentences (108 sentence 
pairs) from the German adaptation of the speech in noise (SPIN) corpus 
(Kalikow et al., 1977; Erb et al., 2012). Keywords from highly predict-
able sentences had a mean cloze probability of 0.85 (SD = 0.14). Key-
words from lowly predictable sentences had a mean cloze probability of 
0.1 (SD = 0.02). We further manipulated the intelligibility of the sen-
tences using speech-shaped noise as an energetic masking signal at six 
different intensities. Speech-shaped noise was generated by filtering 
white noise with the long-term average spectrum of the 216 experi-
mental sentences (Nilsson et al., 1994). Importantly, intelligibility levels 
were centred on the individual SRT and comprised three levels that were 
less intelligible (-1 dB SNR, − 4 dB SNR, − 9 dB SNR relative to SRT) and 
three levels that were more intelligible (+1 dB SNR, +4 dB SNR, +9 dB 
SNR relative to SRT).

2.4. MRI acquisition

Functional images were acquired with a 3-Tesla Siemens Prisma 

scanner equipped with a 32-channel head coil. We used a dual gradient- 
echo planar imaging multiband sequence (Feinberg et al., 2010) with 
the following parameters: TR = 2000 ms; TE1 = 12 ms, TE2 = 33 ms; 
flip angle = 90◦; voxel size = 2.5 × 2.5 × 2.5 mm with an interslice gap 
of 0.25 mm; FOV = 204 mm; multiband acceleration factor = 2. 1500 
volumes with 60 slices were acquired in interleaved order in axial di-
rection for each participant. To increase coverage of the anterior tem-
poral lobe regions, we tilted the slices by 10◦ off the AC-PC line. 
Additionally, field maps were acquired with the following parameters: 
TR = 620 ms; TE = 4 ms, 6.46 ms. Field maps were used for distortion 
correction in the preprocessing pipeline. Structural T1-weighted images 
were obtained from the in-house database or acquired at the end of the 
fMRI session using an MPRAGE sequence and the following parameters: 
TR = 1300 ms; TE = 2.98 ms, voxel size = 1×1 x 1 mm, matrix size 
= 256 x 240 mm, flip angle = 9◦.

2.5. Behavioural data analysis

As the analysis of behavioural performance in the sentence repetition 
task was not the focus of the present study, the interested reader is 
referred to Rysop et al., 2022 for a detailed description and report. In 
brief, psychometric curves were fitted to repetition accuracies of the 
sentence-final keywords for highly and lowly predictable sentences 
across all intelligibility levels using the Psignifit toolbox (Fründ et al., 
2011). Specifically, we used cumulative Gaussian sigmoid functions to 
model speech comprehension as a function of predictability and intel-
ligibility. Psychometric curves can be described by a combination of the 
following parameters: threshold, slope, width, guess rate and lapse rate. 
In the present analysis, we were only interested in the threshold 
parameter that denotes the intelligibility level corresponding to a 
probability of 50 % for a correct repetition. In our previous study, we 
found a significant difference between sentences of high versus low 
predictability. Keywords from highly predictable contexts were under-
stood correctly already at lower levels of intelligibility, compared to 
keywords from lowly predictable contexts (i.e., predictability gain). 
There was no difference between age groups, rather the psychometric 
curves from both age groups were strikingly similar (Rysop et al., 2022). 
For the present study, the threshold parameter estimates of the psy-
chometric curves were extracted for highly and lowly predictable sen-
tences of both age groups and used for correlation analyses between 
behavioural performance and task-related network activity and func-
tional connectivity (see Fig. 1B for an illustration of the psychometric 
curves and the threshold parameter).

2.6. Functional imaging

2.6.1. Preprocessing
FMRI data were preprocessed using SPM12 (version 7219, Wellcome 

Department of Imaging Neuroscience, London, UK) and MATLAB 
(version R2020b). Only data from the second echo time were used, 
therefore the first five timepoints were excluded from preprocessing and 
further analyses, as they were used for echo alignment. Data were 
realigned, distortion corrected and segmented. Functional images were 
co-registered to the individual anatomical T1 scan and normalised to the 
template by the Montreal Neurological Institute (MNI). Original voxel 
size was kept throughout this process. Finally, a two-dimensional in- 
slice Gaussian smoothing kernel of 5 mm2 was applied. Motion param-
eters obtained from the realignment procedure were used as nuisance 
regressors. Additionally, framewise displacement was calculated as 
suggested in Power et al., (2012) and each frame that exceeded a 
framewise displacement of 0.9 mm was assigned a temporal censor as a 
nuisance regressor (Siegel et al., 2014).

2.6.2. Independent component analysis
As the overt repetition of speech in the experiment introduced mo-

tion artefacts, we applied a dual-ICA approach to obtain denoised group- 
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level independent components (ICs) using the Group ICA of fMRI 
toolbox (GIFT; version GroupICATv4.0b (GIFTv3.0b); Calhoun et al., 
2001). That is, the entire group-wise spatial ICA procedure was imple-
mented once as a denoising step and a second time to identify and 
characterise network components for further spatial and temporal 
analysis. ICA included several steps. First, time series were 
intensity-normalised. Then, data dimensions were reduced in a two-step 
principal component analysis (PCA) procedure. An initial PCA per-
formed at the participant-level reduced the full 1470 timepoint session 
length to 62 per session, as determined using minimum description 
length criteria. An ensuing PCA on concatenated group data reduced the 
full data to 62. After data reduction, ICA was applied using the Infomax 
algorithm, and Icasso repeated ICA 50 times to determine the compo-
nents with the most stability (Himberg and Hyvärinen, 2003). The first 
implementation of ICA separated the fMRI signal into 62 maximally 
independent group-level sources containing cortical signal, noise, or a 
mixture of both. Through visual inspection, we identified 40 noise-only 
components dominated by scanner artefacts, physiological noise, or 
subject motion (Griffanti et al., 2017). These components were subse-
quently removed using the remove components utility in GIFT, resulting 
in reconstructed session-level datasets. The second ICA was run on the 
reconstructed dataset, pre-setting the number of components to be 
extracted to 30 (no minimum description length criteria applied) as 
previous resting-state network studies have reported a reduction to 20 
and 40 dimensions as optimal for network identification (Wang and Li, 
2015). The resulting 30 components were used for further analyses, and 
each component was back-reconstructed to each session using the 
GICA3 method in GIFT and then scaled to Z-scores within each 
component.

2.6.3. Network identification
Visual inspection of independent components determined which 

components reflected physiological noise or other artefacts, and those 
were removed from further analysis. Out of the 30 components, 17 maps 
comprised signal generated by wide-spread regions across the cortex, 
representing large-scale neural networks active during the task. This set 
of ICs, or networks, were further narrowed down by excluding primary 
sensory networks (except for the primary auditory network) alongside 
subcortical and cerebellar components. The final set of selected net-
works consisted of 13 cortical networks. To classify and label the 13 
components of interest, we compared the spatial map of each compo-
nent with templates of relevant functional networks described in the 
literature. These network templates comprised resting-state networks 
from the 17-network parcellation by Yeo and colleagues (2011), resting- 
state ICA networks from Smith and colleagues (2009), Activation Like-
lihood Estimation (ALE)-derived networks for general semantic cogni-
tion, auditory semantic cognition and semantic control (Jackson, 2021), 
and the task-based template of the multiple-demand network 
(Fedorenko et al., 2013). The resting-state, ALE-derived, and task-based 
network maps were thresholded to a minimum of 20 % of the map’s 
maximum value and binarized. Next, we quantified the overlap between 
each component and template using the Jaccard similarity index 
(Jaccard, 1912). The Jaccard similarity index computes an overlap 
index between two binarized images, ranging from 0 (no overlap) to 1 
(full overlap) and has been used for this purpose before (Jackson et al., 
2019; Martin et al., 2022). The components were labelled according to 
their maximum Jaccard index with these networks. In case of several 
competing networks, the decision was guided by visual inspection of the 
spatial distribution of the respective component. Some components did 
not span the entire template but rather formed topologically separate 
subnetworks. In these cases, the assigned network label contains topo-
logical specifications in addition to the network name (e.g., for the 
anterior default mode network (DMN), the DMN had the highest Jaccard 
index, but only anterior DMN regions were involved).

2.6.4. Task-related activity
At the participant level, we created a design matrix in SPM modelling 

sentence onsets and durations of the high and low predictability con-
dition, yielding two task regressors (i.e., unmodulated regressors). Intel-
ligibility levels entered the model as parametric modulators of both task 
regressors, yielding two additional regressors (i.e., parametrically 
modulated regressors). The parametric regressors were orthogonalized 
with respect to the unmodulated regressors. Hence, the unmodulated 
regressors can be interpreted as the average activity across all levels of 
intelligibility and the parametrically modulated regressors encode the 
intelligibility-dependent effect of predictability on the fMRI signal 
(Mumford et al., 2015). As we were interested in the interactive effect of 
predictability and intelligibility, only the parametric (i.e., 
intelligibility-dependent) regressors were used in the present analyses. 
Several nuisance regressors were added to model the response onsets 
and durations of participants‘ overt responses and to capture 
movement-related signal (six motion parameters obtained from the 
realignment step, additional regressors for volumes that exceeded the 
framewise displacement threshold).

We were interested in age- and predictability-dependent differences 
in activity within each network. Thus, we conducted a multiple temporal 
regression analysis on the timeseries of the 13 ICA-derived networks 
applying the temporal sorting function of GIFT using the parametrically 
modulated experimental regressors for high and low predictability (as 
described above) to investigate the intelligibility-dependent effect of 
predictability. Time and dispersion derivatives were included to account 
for interindividual variability in the haemodynamic response function 
(Friston et al., 1998). This analysis yields estimates of task-related ac-
tivity for each network and each experimental condition. To investigate 
the involvement of the functional networks in the experimental task, the 
resulting beta weights were extracted and submitted to 2×2 factorial 
ANOVAs in R (R Core Team, 2021), with the within-participant factor 
predictability (high/low + parametrically modulated intelligibility) and 
between-participant factor age (younger/older adults). Finally, beta 
weights from those networks that showed a significant statistical effect 
in the ANOVAs were correlated with the threshold parameter extracted 
from the psychometric curves to assess the behavioural relevance of 
activation differences. The correlations between activity and behav-
ioural parameter estimates were tested using Spearman’s rank correla-
tions and Bonferroni-corrected for multiple comparisons.

2.6.5. Functional connectivity
To estimate task-related network connectivity between the ICA- 

derived networks, we used the correlational psychophysiological inter-
action (cPPI) approach (Fornito et al., 2012; Williams et al., 2022). In 
brief, this method generates PPI terms for each pair of networks by 
multiplying a task regressor with each network’s deconvolved time 
course and convolving the resulting term with a canonical hemody-
namic response function again. In contrast to the traditional PPI 
approach (Friston et al., 1997; Gitelman et al., 2003), cPPI computes 
pair-wise partial correlations between two networks, which control for 
confounds and the activity of the remaining networks, resulting in 
non-directed estimations of network pair interactions. Confounds 
include task-based regressors of no interest, such as the time windows in 
which participants repeated what they heard, noise parameters, 
including motion parameters, and average signal from white matter and 
cerebrospinal fluid, as obtained using masks derived from tissue prob-
ability maps output during preprocessing. At the single-participant 
level, we generated separate cPPIs for highly predictable sentences 
with parametrically modulated intelligibility, and for lowly predictable 
sentences with parametrically modulated intelligibility. This procedure 
was applied for all network pairs, resulting in a 13 x 13 symmetrical 
partial correlation matrix for each participant. Finally, the correlation 
coefficients were Fisher–z-transformed.

For second-level analyses, the participant-level connectivity matrices 
were submitted to one-sided t-tests to assess the effect of predictability 
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and two-sample t-tests to assess the effect of age. These analyses were 
performed using the Network-Based Statistics toolbox (NBS; Zalesky et al., 
2010). NBS uses permutation testing to for multiple comparisons. The 
initial cluster-forming threshold was set to p < 0.01 and the 
FWE-corrected significance threshold was set to p < 0.05 with 10,000 
permutations. Framewise displacement was included as a covariate of 
no interest to control for motion-related effects. Results of the cPPI an-
alyses were exported to R and visualised using the package circlize (Gu 
et al., 2014).

To investigate the behavioural relevance of differences in functional 
connectivity, we performed a set of Spearman’s rank correlations be-
tween the respective connectivity parameter estimate and the threshold 
parameter of the psychometric curves. Results were corrected for mul-
tiple comparisons using Bonferroni correction. Correlation analyses 
were conducted in R (R Core Team, 2021) and visualised using the 
package ggplot2 (Wickham, 2016).

3. Results

3.1. Domain-specific and domain-general functional networks identified 
via ICA

Using spatial ICA, we identified 13 cortical components of interest 
corresponding to established domain-general and domain-specific 
functional networks (Fig. 2). We classified the components according 
to their overlap with network templates of common resting-state net-
works (Smith et al., 2009; Yeo et al., 2011), semantic cognition networks 
(Jackson, 2021) and the multiple demand network (Fedorenko et al., 
2013) using the Jaccard similarity index (Supplementary Table 1). IC02 
showed highest spatial similarity with SomatoMotor B network (Yeo 
et al., 2011), originally described to include the auditory cortex. Because 
the second and third highest spatial similarities were with the auditory 
network (Smith et al., 2009) and auditory cognition (Jackson, 2021), 
and the largest clusters fell within left and right Heschl’s gyri 
(Supplementary Table 2), we refer to IC02 as the temporal auditory 
network. IC06 and IC16 most closely resembled Smith’s frontoparietal 
control network (FPCN) and split into the right (IC06) and left hemi-
sphere (IC16).

We found three independent components (IC07, IC15 and IC30) that 

Fig. 2. ICA results. Spatial maps of ICA-derived networks with their original component number and the most probable cognitive network label according to the 
Jaccard index. Displayed maps show t-scores from one-sided t-tests (peak-level, FWE-corrected at p < 0.05, cluster size > 10 voxels). Networks are categorised 
according to their putative sensory or cognitive function.
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matched templates of the default mode network. IC07 shows a consid-
erable overlap with Smith’s DMN and is therefore referred to as default 
mode network. IC15 shows a similarly high Jaccard coefficient for 
Smith’s DMN, but key nodes are predominantly located in anterior re-
gions, therefore we refer to IC15 as anterior subnetwork of the DMN 
(aDMN). Likewise, IC30 matches Yeo’s Default A and Default B net-
works, but encompasses mostly posterior regions, such as the precuneus 
and posterior cingulate cortex and is therefore referred to as posterior 
subnetwork of the DMN (pDMN). The components IC10 and IC28 were 
classified as Yeo’s ventral attention network A (VAN A, IC10) and 
ventral attention network B (VAN B, IC28). IC11 showed greatest sim-
ilarity with Jackson’s general semantic cognition map and is thereafter 
referred to as semantic network. IC17 showed no clear similarity to any 
of the templates. It most closely matched the template of the multiple 

demand network (only overlapping with anterior regions of the multiple 
demand network) and for the ventral attention network B, however the 
Jaccard coefficients are low (J = 0.12). As it mostly covers the medial 
anterior regions, such as the pre-SMA, SMA (identified via the Human 
Motor Area Template, Mayka et al., 2006), as well as the superior and 
middle frontal gyri, we refer to this component as the SMA network. 
With respect to IC18, additional analyses were necessary as the Jaccard 
similarity coefficient was the same for the Jackson’s semantic control 
network and for the multiple demand network. A weighted correlation 
was conducted using AFNI’s 3dMatch function (Taylor and Saad, 2013) 
and showed greater similarity between IC18 and Jackson’s semantic 
control network. Considering this result as well as the spatial topog-
raphy, IC18 was referred to as semantic control network. In a similar 
manner, IC20 showed spatial similarity with the semantic control, 

Fig. 3. Results task-related activity. Dots represent parameter estimates from the multiple regression analysis of task-related activity in the ICA-derived networks. 
Asterisks denote significant effects of predictability, age or the interaction of predictability and age. Large dots represent the mean.
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Smith’s executive control network and Yeo’s salience/ventral attention 
B network. The spatial topography of IC20 spans across left and right 
insula as well as the anterior cingulate cortex, regions that are classically 
associated with the cingulo-opercular network (Dosenbach et al., 2008; 
Dosenbach et al., 2025). Throughout the literature, there is generally a 
vast heterogeneity in the practice of network labelling, with most 
diverse labels for the cingulo-opercular network, which is often referred 
to as salience network or part of the multiple-demand network (Menon 
and Uddin, 2010; Uddin et al., 2019). However, in the speech in noise 
literature, the cingulo-opercular network, encompassing bilateral ante-
rior insulae and the dorsal anterior cingulate cortex, is one of the most 
frequently reported networks (Rogers and Peelle, 2022). Hence, to 
maintain consistency within the field, we refer to IC20 as 
cingulo-opercular network. Finally, IC23 showed a high overlap with 
the dorsal attention network A and is therefore referred to as DAN. All 
ICs and corresponding networks are visualized in Fig. 2 and their spatial 
topography can be found in Supplementary Table 2.

3.2. Older adults show higher activity in domain-general networks during 
speech comprehension in noise

To identify age- and task-related differences in network activity, we 
conducted a multiple regression analysis using the temporal sort utility of 
the GIFT package. As we were interested in age-related differences in the 
interactive effect of predictability and intelligibility, we extracted beta 
weights using those regressors that captured the intelligibility- 
modulated effect of predictability. We found differences in activity 
patterns in six networks (Fig. 3; see Supplementary Table 3 for all sta-
tistical results and Supplementary Fig. 1 for a visualisation of task- 
related activity in the remaining networks).

Older participants showed reduced activity relative to young par-
ticipants in the auditory network in both intelligibility-modulated pre-
dictability conditions. In comparison with young listeners, older adults 
showed increased activity in the right FPCN, DAN and pDMN. Further, 
there was a main effect of predictability in the VAN A network, with 
higher activity for highly predictable sentences of increasing intelligi-
bility in both groups. Finally, we found a significant interaction of age 
and intelligibility-modulated predictability in the semantic network. 
Here, young listeners showed higher levels of activity for lowly pre-
dictable sentences. The opposite pattern emerged for older listeners: 
Task-related activity was higher for highly predictable sentences at 
increasing intelligibility (Fig. 3).

Next, we were interested in the behavioural relevance of task-related 
activity. Therefore, we correlated the threshold parameter of the psy-
chometric curves with estimates of network activity that showed a sig-
nificant effect in the multiple regression analysis. Four significant brain- 
behaviour correlations emerged (see Supplementary Table 3). Increased 
activity in the auditory network was associated with a higher threshold 
for highly predictable sentences in young, but not older listeners (rho 
0.52, p = 0.007). Activity in the right FPCN was correlated with per-
formance for highly predictable sentences in young and older listeners. 
In young listeners, the relationship was positive, that is, higher levels of 
activity were associated with worse behavioural performance (rho =
0.38, p = 0.055). In older listeners, increased levels of activity were 
associated with better behavioural performance (rho = − 0.43, 
p = 0.032). Lastly, the threshold of lowly predictable sentences was 
associated with activity in the semantic network, but only in older adults 
(rho = 0.5, p = 0.013). Those older listeners who showed higher levels 
of activity in the semantic network for lowly predictable sentences 
showed worse behavioural performance. However, none of these brain- 
behaviour correlations survived the Bonferroni correction for multiple 
comparisons, thus we refrain from overinterpreting these correlational 
results.

3.3. Functional connectivity between semantic and domain-general 
networks during high predictability

Finally, we were interested in the influence of predictability on the 
connectivity between functional networks and whether connectivity 
patterns would differ depending on age. First, we assessed functional 
connectivity differences between highly and lowly predictable sentences 
across all participants (predictability-dependent effect, Fig. 4A). Again, 
the parametrically modulated regressors were used for analysis. Several 
significant connections emerged that were stronger for highly predict-
able sentences than for lowly predictable sentences.

The semantic network showed increased coupling with domain- 
general cingulo-opercular, SMA, DAN and VAN A networks. Further, 
the semantic control network showed increased coupling with the 
domain-general DMN and the rFPCN. In addition to the semantic 
network, the cingulo-opercular network was also coupled with the DAN 
and DMN. Most coupling parameters were positive, except for the 
following three network pairs: semantic network and cingulo-opercular 
network, semantic network and SMA network, cingulo-opercular 
network and DAN. The reverse contrast of lowly > highly predictable 
sentences yielded no significant connections. To investigate the rela-
tionship between functional connectivity and behaviour, we correlated 
individual task performance (threshold of psychometric curves) with 
individual connection weights of those connections that were found to 
be significant (Fig. 4B).

Only one significant connectivity-behaviour relationship emerged: 
Functional connectivity between the semantic network and the cingulo- 
opercular network was negatively correlated with the threshold of the 
psychometric function for lowly predictable sentences (rho = − 0.3, 
p = 0.03; Fig. 4B). Thus, those participants with a lower threshold (i.e., 
better comprehension) showed higher connectivity between the se-
mantic and the cingulo-opercular network when predictability was low, 
indicating a beneficial effect of increased functional connectivity be-
tween these networks when semantic context cannot be used to facilitate 
comprehension. However, this significant association vanished after 
correcting for multiple comparisons, and must therefore be interpreted 
with caution. All other connectivity-behaviour correlations were not 
significant (see Supplementary Table 6).

3.4. Younger adults show higher overall between-network connectivity 
than older adults

Next, we investigated the effect of age on between-network con-
nectivity during speech processing in challenging listening conditions, 
irrespective of predictability. Younger adults showed numerous signif-
icant connections between functional networks that were overall 
stronger compared to older adults (Fig. 4C). All coupling parameters 
were positive, except for the connection between the auditory network 
and aDMN. In contrast, older adults had no greater functional connec-
tivity between any of the networks than young adults.

Further, we examined the relationship between connectivity and 
behaviour. Three significant connectivity-behaviour associations 
emerged (Fig. 4D). For young listeners, the connection weight between 
VAN A and DAN was negatively correlated with the threshold of the 
psychometric curves (rho = − 0.277, p = 0.046). That is, the stronger 
the connection between these two attention networks, the lower the 
intelligibility threshold, thus indicating better hearing performance. 
Older adults showed significant brain-behaviour correlations between 
the SMA network and the anterior and posterior DMN. Specifically, the 
connection between SMA and pDMN was negatively associated with the 
behavioural threshold (rho = − 0.304, p = 0.032). This negative corre-
lation indicates better hearing performance when these two networks 
show stronger coupling. In contrast, the connection between aDMN and 
the SMA network was positively associated with the threshold (rho =
0.286, p = 0.044). Thus, stronger connectivity between the two net-
works is associated with a higher threshold, indicating worse hearing 
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performance in noise. No other connectivity-behaviour correlation was 
significant and none of the significant correlations remained after cor-
recting for multiple comparisons (see Supplementary Table 5). There-
fore, all connectivity-behaviour associations must be interpreted with 
caution.

4. Discussion

In the present study, we investigated the effect of predictability in 
challenging listening conditions on semantic and domain-general 
network activity and on interactions between functional networks in 

Fig. 4. cPPI Results. A Circle plot displays the connections that showed increased coupling for highly predictable sentences compared to lowly predictable sentences 
across both age groups. B Connectivity-behaviour correlation. The scatter plot displays how the connection between the semantic and the cingulo-opercular network 
is associated with behavioural performance measured as threshold of the psychometric curves. More positive connectivity between these networks is associated with 
better performance when predictability is low (significance vanishes after Bonferroni correction) and shows a trend towards significance when predictability is high. 
C Circle plot shows between-network connections that were more pronounced in young than older listeners across both predictability levels. D Connectivity- 
behaviour correlation. The scatterplots show relationships between performance (both predictability levels) and the connection between VAN A and DAN in 
young adults (upper scatterplot) and between performance and the connection between pDMN and SMA in older adults (lower scatterplots). The significance 
vanishes after Bonferroni correction. In the circle plots, significant connections are colour-coded according to the corresponding Z-value. All remaining connections 
are shown in light grey. Network colours in the circle plots correspond to the categories of networks established in Fig. 2. SC = semantic control, CON = cingulo- 
opercular network, lFPCN = left frontoparietal control network, rFPCN = right frontoparietal control network, SMA = supplementary motor area, pDMN/DMN/ 
aDMN = posterior / anterior default mode network; DAN = dorsal attention network, VAN A/B = ventral attention network A/B.
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healthy younger and older listeners. Specifically, we probed the effect of 
age and predictability on sentences that were embedded in speech- 
shaped noise and tailored to individual hearing abilities in noise to 
keep task difficulty at a comparable level. The following main findings 
emerged. First, older adults showed higher task-related activity in 
several domain-general networks and reduced activity in the auditory 
network when compared to younger adults. Second, functional con-
nectivity between networks was largely increased for young listeners 
during speech comprehension in challenging listening conditions. 
Finally, high predictability increased the coupling of the semantic 
network with attention networks and decreased the coupling of the se-
mantic network with control networks across both age groups. Key 
findings of our study on between-network connectivity are summarized 
in Fig. 5. Our results demonstrate that functional connectivity under-
lying the predictability gain extends from the classically associated 
networks to several other domain-general networks but overall de-
creases with advancing age.

4.1. Network activity in several domain-general networks is modulated by 
age and predictability

Older adults showed higher task-related activity than younger adults 
in several domain-general networks, including the right FPCN, DAN and 
pDMN. This finding is generally in line with neurocognitive accounts of 
aging, according to which older adults show increased levels of domain- 
general activity already at lower task demand (Cabeza, 2002; Grady, 
2012; Li et al., 2001; Reuter-Lorenz and Cappell, 2008). In particular, 
the CRUNCH hypothesis suggests that this pattern may be related to 
compensatory processes, i.e., that increased activity in regions of 
domain-general networks supports the maintenance of behavioural 
performance (Reuter-Lorenz and Cappell, 2008). Indeed, we did not 
observe age-related differences in task performance in the present 
dataset (see Rysop et al., 2022 for details of the behavioural results). 
Nonetheless, unlike previous work (Erb and Obleser, 2013) our results 
do not provide evidence for the compensation account, as we did not 
find significant brain-behaviour associations between the upregulated 

domain-general networks and task performance. Thus, the pattern of 
increased task-related activity in domain-general networks possibly re-
flects an age-related shift towards less specialized, more domain-general 
neural circuits, as postulated by the dedifferentiation account (Li et al., 
2001). In sum, the present results cannot fully resolve whether the 
observed upregulations reflect compensatory processes or age-related 
processes of dedifferentiation.

Another finding was a main effect of predictability in the VAN A. 
Here, task-related activity was higher for highly predictable sentences. 
This finding can be explained by the involvement of the ventral attention 
network in verbal short-term memory, specifically in the retrieval phase 
of previously encoded verbal stimuli (Majerus et al., 2012). In our 
experiment, the overt repetition task loaded on the verbal short-term 
memory in several aspects. First, the task required participants to hold 
the heard sentence (or sentence fragments) in short-term memory until 
the repetition phase. Second, due to the acoustic degradation, sentence 
fragments of less intelligible sentences had to be held in short-term 
memory, for further (controlled) operations, such as validation, updat-
ing, refinement or reanalysis. As the behavioural performance was 
overall better for highly predictable sentences (due to the predictability 
gain), the observed main effect of predictability in the ventral attention 
network might be a consequence of the larger number of successfully 
repeated highly predictable sentences and thus a task-dependent effect. 
Future studies are needed to disentangle task-dependent from 
task-independent effects.

In the semantic network, we found a significant interaction in task- 
related activity, driven by higher activity for lowly predictable senten-
ces in younger adults and higher activity for highly predictable sen-
tences in older adults. This finding is striking, as we expected higher 
levels of activity in the semantic network in both age groups when 
predictability was high. One explanation for this might be that age 
groups differ in terms of their strategy during speech comprehension in 
noise. Younger adults might rely relatively more on bottom-up decoding 
of the degraded auditory input, whereas older listeners might rely 
relatively more on top-down semantic information to facilitate speech 
comprehension. This interpretation is supported by a line of “false 
hearing” studies, that found a semantic bias when older adults were 
asked to identify words that were embedded in noise and preceded by 
either facilitative, misleading, or neutral context (Rogers, 2017; Rogers 
and Wingfield, 2015). This semantic bias has been explained by a 
transition in hearing strategies across the lifespan, as age-related hear-
ing loss leads to increasingly degraded auditory input in daily life, 
shifting the focus towards contextual cues (Pichora-Fuller, 2008; Rogers, 
2017; Spreng and Turner, 2019). An alternative explanation could be 
related to the topographical composition of the independent component, 
labelled as semantic network. This independent component has been 
referred to as semantic network due to its high degree of overlap with 
Jackson’s general semantic cognition network template (Jackson, 
2021). This template includes both semantic representation and se-
mantic control regions such as the left posterior middle temporal gyrus 
and inferior frontal gyrus, the latter being also recruited by demanding 
semantic tasks (Chiou et al., 2018; Lambon Ralph et al., 2017; Whitney 
et al., 2011). Moreover, this template overlaps with the multiple demand 
network (Fedorenko et al., 2013), which is associated with 
domain-general cognitive control. Thus, this component likely captures 
task-related responses to both high and lowly predictable sentences.

Lastly, older adults showed less task-related activity in the auditory 
network than younger adults. This finding is in line with previous 
studies on age-related differences in speech comprehension in noise, 
reporting an age-related reduction of activity in auditory brain regions 
(Hwang et al., 2007; Manan et al., 2017; Rogers et al., 2020; Wong et al., 
2009), and supports the dedifferentiation account, according to which 
aging reduces domain-specific and increases domain-general activity.

Fig. 5. Schematic of the functional connectivity results. Predictability and age 
modulate functional connectivity between a variety of functional networks, 
including the previously implicated semantic and cingulo-opercular networks, 
and extending to other networks, including control, attention, default mode and 
auditory network. Connections between regions or networks are indicated with 
arrows. Green arrows illustrate predictability-dependent modulations (greater 
for high predictability), grey arrows illustrate age-dependent modulations 
(greater for younger adults). + /- indicate a positive coupling (i.e., correlation) 
or negative coupling (i.e., anticorrelation).
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4.2. Predictability modulates functional connectivity during speech 
comprehension in challenging listening conditions

At the level of functional connectivity, we were interested in differ-
ences in functional coupling between networks as a function of sentence 
predictability. For highly predictable sentences compared to less pre-
dictable sentences, increased coupling was found between the semantic 
network and domain-general attention (VAN A and DAN) and control 
networks (CO and SMA). Importantly, the semantic network showed 
negative coupling (i.e., anticorrelation) with both control networks and 
positive coupling (i.e., correlation) with both attention networks. While 
this may sound counterintuitive at first, as one would expect more 
attention to be required when less context is available to predict the 
sentence, one would rather expect increased coupling between domain- 
general networks, but not with the semantic network. This finding aligns 
well with our previous effective connectivity analysis, showing that 
inhibitory connectivity between regions of the semantic network and the 
cingulo-opercular network increased when sentence predictability was 
high (Rysop et al., 2021; Rysop et al., 2022). Also, this finding points 
towards the notion that the SMA network and the CO network might 
have shared functions or perform similar computations in the context of 
speech in noise comprehension. Indeed, cingulo-opercular regions as 
well as the pre-SMA/middle cingulate cortex are functionally described 
as organizational hubs in the framework of an extended multiple de-
mand network (Camilleri et al., 2018; Martin et al., 2023) or associated 
with a hub for adaptive control that monitors and flexibly coordinates 
cognitive control resources depending on external demands (Eckert 
et al., 2016).

Further, the semantic network showed increased coupling with the 
attention networks VAN A and DAN. These two networks are described 
as two systems for attentional control (Vossel et al., 2014), with the VAN 
being associated rather with bottom-up detection of unexpected or un-
attended signals and DAN with top-down goal directed attention (Vossel 
et al., 2014). Also, both networks are implicated in verbal short term 
memory (Majerus et al., 2012). With respect to the number of significant 
connections, the semantic network had the highest number of significant 
connections, coupling with the cingulo-opercular network, VAN A, DAN 
and the SMA network. The cingulo-opercular network showed increased 
positive coupling with the DMN and increased negative coupling with 
the DAN in high versus low predictability. Thus, during highly pre-
dictable sentences, the semantic network and the DAN seem to work in 
concert, while being both anticorrelated with the CO. A similar anti-
correlation of CO and DAN was found in a study that investigated 
between-network functional connectivity across three different task 
domains, including lexical semantics, attention and social cognition 
(Williams et al., 2022). Interestingly, the anticorrelation of CO and DAN 
was found across all three tasks, indicating that it might reflect a more 
general cognitive process.

4.3. Younger listeners show richer between-network connectivity during 
speech comprehension in challenging listening conditions

Finally, we investigated the effect of age on functional connectivity 
during the comprehension of challenging, but increasingly intelligible 
sentences, irrespective of predictability. Compared to older listeners, 
younger listeners had higher overall connectivity between most cate-
gories of functional networks. At first glance, this finding is surprising 
and contrasts with the literature which often reports higher levels of 
between-network connectivity as a hallmark of aging. However, these 
studies usually rely on measures of segregation, calculated as the ratio of 
within-network to between-network connectivity obtained from graph 
theoretical approaches (Chan et al., 2014; Geerligs et al., 2015), which 
could not be calculated in the present study, as we only focused on 
between-network connectivity. Moreover, most of these studies are 
based on task-free resting-state functional connectivity. However, 
studies that analysed age-related differences in task-based functional 

connectivity tend to provide a more mixed pattern of results, with 
various decreases and increases in between-network connectivity (Ferré 
et al., 2020; Varangis et al., 2019; Zhang et al., 2021). Finally, the 
finding of higher overall between-network connectivity in younger 
adults mirrors the results of our previous effective connectivity analysis 
of the same dataset, where we also found that coupling between the CO 
and the semantic network was stronger in younger adults (Rysop et al., 
2022).

All coupling parameters were positive, except for the connection 
between the auditory network and the aDMN. The control networks 
(CO, SMA network and left and right FPCN) showed the highest number 
of significant connections and showed increased coupling with all 
network categories, except for the auditory network. This finding points 
towards a complex interaction of domain-specific networks (i.e., audi-
tory network, semantic network, semantic control network) and 
domain-general networks (i.e., control networks, attention networks, 
DMN) during speech-in-noise comprehension and lends support to the 
notion that general cognitive functions are involved in speech compre-
hension under challenging listening conditions.

5. Limitations

In this exploratory study, we used a data-driven approach to identify 
functional networks and investigated differences between these func-
tional networks. To the best of our knowledge, this study represents the 
first investigation of large-scale functional brain network interactions 
underlying speech-in-noise comprehension, extending the view from the 
classically associated networks (language network or semantic network 
and cingulo-opercular network) to other established functional net-
works and, importantly, their between-network associations.

One disadvantage resulting from this approach is the rather coarse (i. 
e., network-level) granularity of the results. We investigated connec-
tivity between whole functional networks, ignoring the possibly het-
erogeneous nature of some networks, with different subregions 
supporting different computations. Further research is needed to address 
predictability- and age-related differences in speech-in-noise processing 
in a fine-grained manner. Likewise, the classification procedure of in-
dependent components to relevant functional networks using the Jac-
card similarity index has some drawbacks. The templates differ in 
several aspects, such as their origin (resting-state functional connectiv-
ity vs. ALE analyses), differences in the granularity of their parcellation 
schemes, and the final network labels highly depend on the selected 
network templates. Moreover, there is an ongoing debate in the field of 
network neuroscience about the use of heuristic network labels leading 
to a multitude of different network names for similar underlying regions, 
rendering it difficult to compare studies across disciplines (Uddin et al., 
2019). It is important to keep these drawbacks in mind when inter-
preting the results. Despite its exploratory nature and the limitations 
presented above, this study provides a first characterization of age- and 
predictability-dependent effects on functional connectivity between 
large-scale networks.

6. Conclusion

The present study provides insight into age- and predictability- 
dependent interactions between functional networks during speech 
comprehension in difficult listening conditions. We show that the known 
predictability gain is underpinned by increased positive coupling of the 
domain-specific semantic network with domain-general attention net-
works and increased negative coupling with domain-general control 
networks. Further, older adults showed relatively higher task-related 
activity in domain-general networks than younger adults, alongside 
decreased between-network connectivity. These findings shed new light 
on age-related differences in network activity and functional connec-
tivity during speech comprehension in difficult listening conditions. Our 
findings emphasize that changes in activity and connectivity do not 
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necessarily point into the same direction and highlight the comple-
mentary insight gained from task-related connectivity analyses.
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Ferré, P., Jarret, J., Brambati, S.M., Bellec, P., Joanette, Y., 2020. Task-Induced 
Functional Connectivity of Picture Naming in Healthy Aging: The Impacts of Age and 
Task Complexity. Neurobiol. Lang. 1 (2), 161–184. https://doi.org/10.1162/nol_a_ 
00007.

Fitzhugh, M.C., Schaefer, S.Y., Baxter, L.C., Rogalsky, C., 2021. Cognitive and neural 
predictors of speech comprehension in noisy backgrounds in older adults. Lang., 
Cogn. Neurosci. 36 (3), 269–287. https://doi.org/10.1080/ 
23273798.2020.1828946.

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. Mini-mental state. J. Psychiatr. Res. 12 
(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.

Fornito, A., Harrison, B.J., Zalesky, A., Simons, J.S., 2012. Competitive and cooperative 
dynamics of large-scale brain functional networks supporting recollection. Proc. 
Natl. Acad. Sci. USA 109 (31), 12788–12793. https://doi.org/10.1073/ 
pnas.1204185109.

Friston, K.J., Büchel, C., Fink, G.R., Morris, J., Rolls, E., Dolan, R.J., 1997. 
Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 
218–229.

Friston, K.J., Josephs, O., Rees, G., Turner, R., 1998. Nonlinear event-related responses in 
fMRI. Magn. Reson. Med. 39 (1), 41–52. https://doi.org/10.1002/ 
mrm.1910390109.

Fründ, I., Haenel, N.V., Wichmann, F.A., 2011. Inference for psychometric functions in 
the presence of nonstationary behavior. –16 J. Vis. 11 (6), 16. https://doi.org/ 
10.1167/11.6.16.

Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M., 2015. A Brain-Wide 
Study of Age-Related Changes in Functional Connectivity. Cerebral Cortex 25, 
1987–1999. https://doi.org/10.1093/cercor/bhu012.

Gitelman, D.R., Penny, W.D., Ashburner, J., Friston, K.J., 2003. Modeling regional and 
psychophysiologic interactions in fMRI: The importance of hemodynamic 
deconvolution. NeuroImage 19 (1), 200–207. https://doi.org/10.1016/S1053-8119 
(03)00058-2.

Golestani, N., Hervais-Adelman, A., Obleser, J., Scott, S.K., 2013. Semantic versus 
perceptual interactions in neural processing of speech-in-noise. NeuroImage 79, 
52–61. https://doi.org/10.1016/j.neuroimage.2013.04.049.

Grady, C., 2012. Trends in Neurocognitive Aging. Nat. Rev. Neurosci. 13 (7), 491–505. 
https://doi.org/10.1038/nrn3256.Trends.

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. 
F., Duff, E.P., Fitzgibbon, S., Westphal, R., Carone, D., Beckmann, C.F., Smith, S.M., 
2017. Hand classification of fMRI ICA noise components. NeuroImage 154 (June 
2016), 188–205. https://doi.org/10.1016/j.neuroimage.2016.12.036.

Gu, Z., Gu, L., Eils, R., Schlesner, M., Brors, B., 2014. Circlize implements and enhances 
circular visualization in R. Bioinformatics 30 (19), 2811–2812. https://doi.org/ 
10.1093/bioinformatics/btu393.

Guediche, S., Blumstein, S.E., Fiez, J.A., Holt, L.L., 2014. Speech perception under 
adverse conditions: insights from behavioral, computational, and neuroscience 
research. Front. Syst. Neurosci. 7 (January), 1–16. https://doi.org/10.3389/ 
fnsys.2013.00126.

Hartwigsen, G., Golombek, T., Obleser, J., 2015. Repetitive transcranial magnetic 
stimulation over left angular gyrus modulates the predictability gain in degraded 
speech comprehension. Cortex 68, 100–110. https://doi.org/10.1016/j. 
cortex.2014.08.027.

Himberg, J., & Hyvärinen, A. (2003). ICASSO: Software for investigating the reliability of 
ICA estimates by clustering and visualization. Neural Networks for Signal Processing 
- Proceedings of the IEEE Workshop, 2003-Janua, 259–268. https://doi.org/10.110 
9/NNSP.2003.1318025.

Hoffman, P., Morcom, A.M., 2018. Age-related changes in the neural networks 
supporting semantic cognition: a meta-analysis of 47 functional neuroimaging 
studies. Neurosci. Biobehav. Rev. 84, 134–150. https://doi.org/10.1016/j. 
neubiorev.2017.11.010.

Hwang, J.-H., Li, C.-W., Wu, C.-W., Chen, J.-H., Liu, T.-C., 2007. Aging effects on the 
activation of the auditory cortex during binaural speech listening in white noise: an 

A.U. Rysop et al.                                                                                                                                                                                                                                Neurobiology of Aging 150 (2025) 109–121 

120 

https://doi.org/10.1016/j.neurobiolaging.2025.02.005
https://doi.org/10.1016/j.bandl.2012.04.014
https://doi.org/10.1523/JNEUROSCI.2322-23.2024
https://doi.org/10.1073/pnas.1815321116
https://doi.org/10.1037/0882-7974.17.1.85
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1016/j.neuroimage.2017.10.020
https://doi.org/10.1016/j.neuroimage.2017.10.020
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1016/j.cortex.2018.02.018
https://doi.org/10.1016/j.tics.2008.01.001
https://doi.org/10.1038/s41583-024-00895-x
https://doi.org/10.1038/s41583-024-00895-x
https://doi.org/10.1177/2331216517744675
https://doi.org/10.1177/2331216517744675
https://doi.org/10.1097/AUD.0000000000000300
https://doi.org/10.1016/j.neuropsychologia.2012.05.013
https://doi.org/10.3389/fnsys.2013.00116
https://doi.org/10.3389/fnsys.2013.00116
https://doi.org/10.1073/pnas.1315235110
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1162/nol_a_00007
https://doi.org/10.1162/nol_a_00007
https://doi.org/10.1080/23273798.2020.1828946
https://doi.org/10.1080/23273798.2020.1828946
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1073/pnas.1204185109
https://doi.org/10.1073/pnas.1204185109
http://refhub.elsevier.com/S0197-4580(25)00029-6/sbref21
http://refhub.elsevier.com/S0197-4580(25)00029-6/sbref21
http://refhub.elsevier.com/S0197-4580(25)00029-6/sbref21
https://doi.org/10.1002/mrm.1910390109
https://doi.org/10.1002/mrm.1910390109
https://doi.org/10.1167/11.6.16
https://doi.org/10.1167/11.6.16
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1016/S1053-8119(03)00058-2
https://doi.org/10.1016/S1053-8119(03)00058-2
https://doi.org/10.1016/j.neuroimage.2013.04.049
https://doi.org/10.1038/nrn3256.Trends
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.3389/fnsys.2013.00126
https://doi.org/10.3389/fnsys.2013.00126
https://doi.org/10.1016/j.cortex.2014.08.027
https://doi.org/10.1016/j.cortex.2014.08.027
https://doi.org/10.1109/NNSP.2003.1318025
https://doi.org/10.1109/NNSP.2003.1318025
https://doi.org/10.1016/j.neubiorev.2017.11.010
https://doi.org/10.1016/j.neubiorev.2017.11.010


fMRI study. Audiol. Neurotol. 12 (5), 285–294. https://doi.org/10.1159/ 
000103209.

Jaccard, P., 1912. The Distribution of the Flora in the alpine zone. N. Phytol. 11 (2), 
37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.

Jackson, R.L., 2021. The neural correlates of semantic control revisited. NeuroImage 
224, 117444. https://doi.org/10.1016/j.neuroimage.2020.117444.

Jackson, R.L., Cloutman, L.L., Lambon Ralph, M.A., 2019. Exploring distinct default 
mode and semantic networks using a systematic ICA approach. Cortex 113, 279–297. 
https://doi.org/10.1016/j.cortex.2018.12.019.

Jefferies, E., 2013. The neural basis of semantic cognition: Converging evidence from 
neuropsychology, neuroimaging and TMS. Cortex 49 (3), 611–625. https://doi.org/ 
10.1016/j.cortex.2012.10.008.

Kalikow, D.N., Stevens, K.N., Elliott, L.L., 1977. Development of a test of speech 
intelligibility in noise using sentence materials with controlled word predictability. 
J. Acoust. Soc. Am. 61 (5), 1337–1351. https://doi.org/10.1121/1.381436.

Lambon Ralph, M.A., Jefferies, E., Patterson, K., Rogers, T.T., 2017. The neural and 
computational bases of semantic cognition. Nat. Rev. Neurosci. 18 (1), 42–55. 
https://doi.org/10.1038/nrn.2016.150.

Li, S.-C., Lindenberger, U., Sikström, S., 2001. Aging cognition: from neuromodulation to 
representation. Trends Cogn. Sci. 5 (11), 479–486. https://doi.org/10.1016/S1364- 
6613(00)01769-1.

Majerus, S., Attout, L., D’Argembeau, A., Degueldre, C., Fias, W., Maquet, P., Martinez 
Perez, T., Stawarczyk, D., Salmon, E., Van Der Linden, M., Phillips, C., Balteau, E., 
2012. Attention supports verbal short-term memory via competition between dorsal 
and ventral attention networks. Cereb. Cortex 22 (5), 1086–1097. https://doi.org/ 
10.1093/cercor/bhr174.

Manan, H.A., Yusoff, A.N., Franz, E.A., Mukari, S.Z.M.S., 2017. Effects of aging and 
background babble noise on speech perception processing: an fMRI study. 
Neurophysiology 49 (6), 441–452. https://doi.org/10.1007/s11062-018-9707-5.

Martin, S., Frieling, R., Saur, D., Hartwigsen, G., 2023. TMS over the pre-SMA enhances 
semantic cognition via remote network effects on task-based activity and 
connectivity. Brain Stimul. 16 (5), 1346–1357. https://doi.org/10.1016/j. 
brs.2023.09.009.

Martin, S., Williams, K.A., Saur, D., Hartwigsen, G., 2022. Age-related reorganization of 
functional network architecture for language processing. Cereb. Cortex 1, 18.

Mayka, M.A., Corcos, D.M., Leurgans, S.E., Vaillancourt, D.E., 2006. Three-dimensional 
locations and boundaries of motor and premotor cortices as defined by functional 
brain imaging: A meta-analysis. NeuroImage 31 (4), 1453–1474. https://doi.org/ 
10.1016/j.neuroimage.2006.02.004.

Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network 
model of insula function. Brain Struct. Funct. 214 (5–6), 655–667. https://doi.org/ 
10.1007/s00429-010-0262-0.

Mumford, J., Poline, J.-B., Poldrack, R.A., 2015. Orthogonalization of regressors in fMRI 
models. PLoS ONE 10 (4), 1–11. https://doi.org/10.1371/journal.pone.0126255.

Nilsson, M., Soli, S.D., Sullivan, J.A., 1994. Development of the Hearing In Noise Test for 
the measurement of speech reception thresholds in quiet and in noise. J. Acoust. Soc. 
Am. 95 (2), 1085–1099. https://doi.org/10.1121/1.408469.

Obleser, J., Kotz, S.A., 2010. Expectancy constraints in degraded speech modulate the 
language comprehension network. Cereb. Cortex 20 (3), 633–640. https://doi.org/ 
10.1093/cercor/bhp128.

Obleser, J., Wise, R.J.S., Dresner, A.M., Scott, S.K., 2007. Functional integration across 
brain regions improves speech perception under adverse listening conditions. 
J. Neurosci. 27 (9), 2283–2289. https://doi.org/10.1523/JNEUROSCI.4663- 
06.2007.

Oldfield, R.C., 1971. The assessment of handedness: the edinburgh inventory. 
Neuropsychologia 9 (1), 97–113.

Pichora-Fuller, M.K., 2008. Use of supportive context by younger and older adult 
listeners: Balancing bottom-up and top-down information processing. Int. J. Audiol. 
47. https://doi.org/10.1080/14992020802307404.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious 
but systematic correlations in functional connectivity MRI networks arise from 
subject motion. NeuroImage 59 (3), 2142–2154. https://doi.org/10.1016/j. 
neuroimage.2011.10.018.

R Core Team; (2021). R: A Language and environment for statistical computing. R 
Foundation for Statistical Computing. 〈https://www.r-project.org/〉.

Reuter-Lorenz, P., Cappell, K.A., 2008. Neurocognitive aging and the compensation 
hypothesis. Curr. Dir. Psychol. Sci. 17 (3), 177–182. https://doi.org/10.1111/ 
j.1467-8721.2008.00570.x.

Rogers, C.S., 2017. Semantic priming, not repetition priming, is to blame for false 
hearing. Psychon. Bull. Rev. 24 (4), 1194–1204. https://doi.org/10.3758/s13423- 
016-1185-4.

Rogers, C.S., Jones, M.S., McConkey, S., Spehar, B., Van Engen, K.J., Sommers, M.S., 
Peelle, J.E., 2020. Age-related differences in auditory cortex activity during spoken 
word recognition. Neurobiol. Lang. 1 (4), 452–473. https://doi.org/10.1162/nol_a_ 
00021.

Rogers, C.S., Peelle, J.E., 2022. Interactions between audition and cognition in hearing 
loss and aging. In: Holt, L.L., Peelle, J.E., Coffin, A.B., Popper, A.N., Fay, R.R. (Eds.), 
Speech Perception. Springer, ASA Press, pp. 227–252. https://doi.org/10.1007/978- 
3-030-81542-4_9.

Rogers, C.S., Wingfield, A., 2015. Stimulus-independent semantic bias misdirects word 
recognition in older adults. J. Acoust. Soc. Am. 138 (1), EL26–EL30. https://doi.org/ 
10.1121/1.4922363.
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