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Abstract 40 

The event-related potential/field component N400(m) is a widely accepted neural index for 41 

semantic prediction. Top-down input from inferior frontal areas to perceptual brain regions is 42 

hypothesized to play a key role in generating the N400, but testing this has been challenging due 43 

to limitations of causal connectivity estimation. We here provide new evidence for a predictive 44 

model of speech comprehension in which IFG activity feeds back to shape subsequent activity in 45 

STG/MTG. Magnetoencephalography (MEG) data was obtained from 21 participants (10 men, 11 46 

women) during a classic N400 paradigm where the semantic predictability of a fixed target noun 47 

was manipulated in simple German sentences through the preceding verb. To estimate causality, 48 

we implemented a novel approach, based on machine learning and temporal generalization, to 49 

test the effect of inferior frontal gyrus (IFG) on temporal regions. A support vector machine (SVM) 50 

classifier was trained on IFG activity to classify less predicted (LP) and highly predicted (HP) 51 

nouns and tested on superior/middle temporal gyri (STG/MTG) activity, time-point by time-point. 52 

The reverse procedure was then performed to establish spatiotemporal evidence for or against 53 

causality. Significant decoding results were found in our bottom-up model, which were trained at 54 

hierarchically lower level areas (STG/MTG) and tested at the hierarchically higher IFG areas. 55 

Most interestingly, decoding accuracy also significantly exceeded chance level when the classifier 56 

was trained on IFG activity and tested on successive activity in STG/MTG. Our findings indicate 57 

dynamic top-down and bottom-up flow of information between IFG and temporal areas when 58 

generating semantic predictions.  59 
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Significance Statement 61 

Semantic prediction helps anticipate the meaning of upcoming speech based on 62 

contextual information. How frontal and temporal cortices interact to enable this crucial function 63 

has remained elusive. We used novel data-driven MEG analyses to infer information flow from 64 

lower to higher areas (bottom-up) and vice versa (top-down) during semantic prediction. Using 65 

"earlier" MEG signals in one area to decode the "later" in another, we found that inferior frontal 66 

cortices feed predictions back to temporal cortices, to help decipher bottom-up signals going to 67 

the opposite direction. Our results provide experimental evidence on how top-down and bottom-68 

up influences interact during language processing. 69 

  70 
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 6 

Introduction 71 

Lexical semantic prediction has been associated with an event-related response 72 

component termed N400 (Kutas and Hillyard, 1980, 1989; Federmeier, 2007; Lau et al., 2009; 73 

Lau et al., 2013b; Lau et al., 2013a). N400 amplitude is sensitive to the previous context, and its 74 

amplitude is reliably reduced following a supportive or predictive context (Kutas and Hillyard, 75 

1984; Federmeier et al., 2007; Kutas and Federmeier, 2011; Wlotko and Federmeier, 2012).  76 

Using MEG, several approaches have been taken to identify the brain network underlying 77 

the N400m, the magnetic counterpart of N400 observed in EEG. Generally, the results suggest 78 

left hemispheric dominance and involvement of temporal and inferior frontal sources in N400(m) 79 

generation (Halgren et al., 2002; Marinkovic et al., 2003; Pulvermüller et al., 2005; Maess et al., 80 

2006; Pylkkanen and McElree, 2007; Salmelin, 2007; Dikker and Pylkkanen, 2012). Despite 81 

numerous studies on N400, the information flow between regions appearing to contribute to N400 82 

generation has remained elusive. 83 

Theoretical models on language processing suggest that superior and middle temporal 84 

regions perform bottom-up processing while inferior frontal areas send top-down (or feedback) to 85 

temporal areas to support lexical-semantic processing (Engel et al., 2001; Badre et al., 2005; 86 

Badre and Wagner, 2007; Lau et al., 2008). This proposition receives support from studies using 87 

dynamic causal modeling (DCM) of fMRI activations during semantic processing (Noppeney et 88 

al., 2006) though the exact timing of these processes needs further specification. In 89 

neurophysiological studies, these kinds of directional or "causal" influences are often 90 

characterized as effective connectivity. However, due to methodological challenges of causality 91 

estimation from MEG or EEG data, testing hypotheses regarding the interregional influences 92 

during N400 generation has remained difficult.  93 

A small number of previous N400 studies have estimated fronto-temporal directional 94 

influences using a model-driven method known as Granger causality (Cope et al., 2017; 95 

Schoffelen et al., 2017). The Granger causality analysis tests whether information from the past 96 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 7 

activity of one region can predict future activity in another better than its own past using single 97 

variable auto-regressive models (Granger and Hatanaka, 1964). For example, in an MEG 98 

experiment with word reading task, the Granger causality method identified that inferior frontal 99 

cortex and anterior temporal regions to receive widespread input from language network and 100 

middle temporal regions to send widespread output to fronto-temporal-parietal cortex (Schoffelen 101 

et al., 2017) . In parallel, bi-directional Granger-causal relationships were observed between 102 

temporal and frontal sources in matching between degraded spoken words with the previously 103 

shown visual word (Cope et al., 2017). However, the limitation of model-driven approaches such 104 

as Granger causality, or its analogue "dynamic causal modeling", is that they require assumptions 105 

of the temporal and spatial covariance of the sources, which are difficult to estimate in the 106 

presence of noise and with a limited amount of data.  107 

Here, to address the critical barriers on causality modeling, we therefore implemented a 108 

novel data-driven approach to estimate the causal connections between frontal and temporal 109 

areas during N400 generation. We used data from a classic N400 paradigm with simple German 110 

sentences where the final noun was highly predicted (HP) or less predicted (LP) by the preceding 111 

verb. Nouns are identical in both conditions, but the prior context varies. Hence, HP and LP are 112 

characteristics of nouns-in-context and not a (lexical) characteristics of the nouns themselves. 113 

The same noun can be highly predictable in one context and have a low predictability in another 114 

context. Our method is based on the temporal generalization technique (King and Dehaene, 115 

2014), which uses machine learning. Using this method a classifier is trained on one cortical 116 

area’s activity and each time point to discriminate between HP and LP. This classifier is then 117 

tested in another cortical area across all time points following temporal generalization idea.  118 

This method allows us to quantify that how much information from one area is predictive 119 

of activity in another area and future time points. Our method’s concept is, thus, similar to Granger 120 

causality in principle but it is predominantly data driven and based on multivariate analysis. We 121 

tested this method in the context of a study pursuing better understanding of the complex 122 
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 8 

dynamics of top-down and bottom-up information flow within fronto-temporal language network 123 

during auditory perception of speech.   124 
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 9 

Materials and Methods 125 

Participants 126 

In total, N=21 right-handed German native speakers (11 women) participated in a MEG 127 

experiment (age range: 20-32 years, median: 27) (Oldfield, 1971). The participants reported 128 

having no hearing deficits or neurological diseases and they gave a written informed consent 129 

before the experiment. The study was conducted in accordance with the declaration of Helsinki, 130 

and it received ethical approval from the ethics commission of the University of Leipzig (Ref. 059-131 

11-07032011). Other, more rudimentary results on these data have been analyzed and published 132 

previously in (Maess et al., 2016; Mamashli et al., 2019b). 133 

 134 

Stimuli  135 

The stimuli consisted of short German sentences, including a pronoun, verb, article and 136 

noun [e.g. He drives the car, German: Er fährt das Auto], which were grouped based on the cloze 137 

probability values of the nouns. Cloze probability is the probability that mother tongue speakers 138 

would select this word to complete the given context (Taylor, 1953). Cloze probability was 139 

measured in a behavioral pre-study. Participants filled out uncompleted sentences that had a 140 

personal pronoun (Er/Sie [he/she]) followed by a verb. Participants were asked to complete the 141 

sentence in a simple way by providing just a determiner and a noun. The cloze probability of the 142 

nouns was measured by the number of times a native speaker completed the sentence with that 143 

noun relative to all other completion for a given verb (Maess et al, 2016). Nouns with a cloze 144 

probability >50% were considered as having high semantic predictability (HP), [e.g. He drives the 145 

car, German: Er fährt das Auto] and those with a cloze probability <=24% were considered to 146 

have low semantic predictability (LP), [e.g. He gets the car, German: Er kriegt das Auto] (Maess 147 

et al., 2016). The cut-off thresholds were chosen based on Gunter et al, 2000 study. The complete 148 

set of stimuli consists of 69 pairs. Each pair had same noun but different verb to provide the prior 149 
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 10 

context. The verb was either predictive or not predictive of the following noun. As we used the 150 

same determiner-noun phrase for each of the sentence pairs, there were no stimulus driven 151 

differences such as word frequency or length at the noun level between the conditions. 152 

Design and procedure 153 

In a dimly lit shielded room, MEG data were measured with a 306 channel Neuromag 154 

Vectorview device (Elekta, Helsinki, Finland), at 500 Hz sampling rate using a bandwidth of 155 

160 Hz (Vacuumschmelze Hanau, Germany). Each participant’s individual hearing thresholds 156 

were determined for both ears separately using a subpart of one of the sentences. This particular 157 

sentence was not used later in the actual experiment. Stimuli were presented at 48 dB sensation 158 

level (i.e., above the mean between left and right ear individual hearing threshold). Each 159 

experimental session consisted of five recording blocks. All stimuli were randomized and 160 

presented in the first two blocks. Using a different randomization, stimuli were repeated in blocks 161 

three and four. The onsets of all sentences, and the onsets of the verbs and the nouns were 162 

specifically marked. In the fifth block, a sequence of simple tones (200 ms length and 500 Hz 163 

pitch) was presented. The data from this block are not presented here.  164 

During each measurement block, participants were instructed to fixate a visually projected 165 

cross, to listen carefully to the presented sentences, and to stay motionless. The fixation cross 166 

was presented from 700 ms before onset until 700 ms after the offset of each sentence. To keep 167 

participants engaged with the listening, in 15% of the sentences, the same or an alternative 168 

sentence, was spoken by a male voice. Participants’ (incidental) were asked to judge whether the 169 

two preceding sentences (female and male voice) were the same by a button press. A symbolic 170 

face was provided to inform participant’s response-to-button-alignment: one happy and one sad 171 

face, presented on the left and right side of the screen.  Participants answered “yes” with pressing 172 

the button at the side of the happy face and “no” with the other using their thumb. The symbolic 173 

faces were randomly presented on right or left and counterbalanced over all stimuli in each block.  174 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 11 

Data preprocessing 175 

Signal space separation (SSS) method was used to suppress environmental interference 176 

of the MEG data (Elekta-Neuromag Maxfilter software) (Taulu et al., 2004; Taulu and Simola, 177 

2006) and also to transform the data from each block into the same head position (Taulu et al., 178 

2004). To suppress cardiac and eye artifacts, signal space projection was used (Gramfort et al., 179 

2014). Data were extracted into single trials lasting 1.4 seconds, ranging from 400 ms before noun 180 

onset to 1000 ms following it. MEG data were filtered with a low pass filter of 25 Hz using MNE-181 

C (fft-based filter) and a highpass of 0.5 Hz with a filter size of 8192.  Epochs were rejected if the 182 

peak-to-peak amplitude exceeded 150 μV, 1 pT/cm, and 3 pT in any of the electrooculogram, 183 

gradiometer, and magnetometer channels, respectively. To equalize the signal-to-noise ratio in 184 

each condition (i.e., HP and LP), the number of trials in the lesser populated condition was used 185 

to analyze both conditions. The median of the used trials was 97.5 and the minimum number of 186 

trials was 79.  187 

Source estimation 188 

Each participant's cortical surface representation was reconstructed from 3D structural 189 

MRI data using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). The cortical surface was 190 

decimated to a grid of 10242 dipoles per hemisphere, i.e., with approximate spacing of 5 mm 191 

between adjacent source locations on the cortical surface. The MEG forward solution was 192 

computed using a single-compartment boundary-element model (BEM) assuming the shape of 193 

the intracranial space (Hämäläinen and Sarvas, 1987). The inner skull surface triangulations was 194 

generated from the T1-weighted MR images of each participant with the Freesurfer "wastershed" 195 

algorithm. The cortical current distribution was estimated using a depth-weighted, minimum-norm 196 

estimate (MNE) (http://www.martinos.org/martinos/userInfo/data/sofMNE.php (Lin et al., 2006)) 197 

assuming a fixed orientation of the source, perpendicular to the individual cortical mesh. The 198 

noise-covariance matrix used to calculate the inverse operator was estimated from data collected 199 

from empty room recordings prior and following the recordings with each subject. To reduce the 200 
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 12 

bias of the MNEs towards superficial currents, we used depth weighting. In other words, the 201 

source covariance matrix was adjusted to favor deep source locations. 202 

Inter-subject cortical surface registration for group analysis 203 

Each participant’s inflated cortical surface was registered to an average cortical 204 

representation (FsAverage in FreeSurfer) by optimally aligning individual sulcal-gyral patterns 205 

computed in FreeSurfer (Fischl et al., 1999a). To provide more accurate inter-subject alignment 206 

of cortical regions than volume-based approaches, we used a surface-based registration 207 

technique based on folding patterns (Fischl et al., 1999b; Van Essen and Dierker, 2007). 208 

Region identification and analysis 209 

The analysis were focused on six cortical areas of the FreeSurfer Desikan-Killiany Atlas 210 

in both hemispheres, which are believed to constitute the most critical parts of semantic language 211 

networks (Lau et al., 2008; Price, 2010; Friederici, 2011), including bilateral superior temporal 212 

gyrus (STG), middle temporal gyrus (MTG), and inferior frontal gyrus (IFG) including Brodmann 213 

areas BA44, BA45 and BA47. In addition, we used an automatic routine (mris_divide_parcellation) 214 

available in the Freesurfer package (equal size principle) to break each large region into smaller 215 

equal size sub-regions; i.e., all sub-regions in all regions were of approximately the same size—-216 

thereby increasing the spatial specificity for further analysis (Mamashli et al., 2017; Mamashli et 217 

al., 2019a; Mamashli et al., 2019c; Mamashli et al., 2020; Mamashli et al., 2021a; Mamashli et 218 

al., 2021b), as areas can lead to temporal signal cancellations. Furthermore, we grouped the sub-219 

regions into anterior and posterior parts of each cortical region, e.g., STG will be divided into 220 

anterior STG (aSTG) and posterior STG (pSTG). In total, we had six regions of interest (ROI) in 221 

each hemisphere: aSTG, pSTG, aMTG, pMTG, aIFG and pIFG (Figure 1).  222 

 223 
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 13 

Sub-region time series extraction 224 

Epochs were extracted and averaged across all vertices within each sub-region, to 225 

compute the mean sub-region time course, generating 𝑿(Λ, 𝑇, 𝑁),  where Λ  is the number of 226 

vertices, T is the number of time points, and N is the number of epochs. Since the individual vertex 227 

(dipole) orientations is ambiguous, these time series were first aligned with the dominant 228 

component of the multivariate source time course, and then averaged to calculate the sub-region 229 

mean. In order to align the sign of the time series across vertices, we first concatenated all the 230 

epochs for each vertex in a single time series and then computed an SVD of the data 𝐗T = 𝐔𝚺𝐕𝐓.  231 

The sign of the dot product between the first left singular vector U and all other time-series in a 232 

sub-region was computed. If this sign was negative, we inverted the time-series before averaging 233 

over all time courses of a sub-region. Finally, temporal data of each sub-region was arranged as 234 

a 2D matrix [epochs X time].  235 

Inter-regional temporal generalization Multivariate Pattern Analysis (MVPA) 236 

Here, we use a data-driven multivariate approach to estimate the causal connection 237 

between two regions. Multivariate pattern analysis has been used before both using MEG (King 238 

and Dehaene, 2014; Cichy and Pantazis, 2017; Mohsenzadeh et al., 2018; Hatamimajoumerd et 239 

al., 2020) and fMRI (Hatamimajoumerd et al., 2022) , where a classifier is trained in one 240 

experimental condition and tested in another condition. In contrast, here, a classifier is trained to 241 

learn the difference between conditions at one point of time in one region and then tested in at 242 

another point of time in another region.   243 

 To accomplish this, an SVM classifier is trained across two conditions (LP vs HP) in ROI1 244 

using the sub-ROI activities as features at each time point. This classifier is then tested in ROI2 245 

and across all time points using temporal generalization idea. This process is replicated for all 246 

time points of ROI1 and eventually provides the temporal generalization matrix for each ROI pair. 247 

To increase the signal-to-noise ratio, we randomly selected 10 epochs, averaged within each 248 

condition, and bootstrapped this 100 times (Cichy and Pantazis, 2017).  Different randomizations 249 
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 14 

were  done in ROI1 and ROI2. The time window was from -200ms to 800ms. We focused our 250 

analysis on the within hemisphere ventral and dorsal path in language processing to investigate 251 

the information flow from anterior IFG to anterior temporal areas (e.g., aIFG to aSTG/aMTG) and 252 

posterior IFG to posterior temporal (e.g., pIFG to pSTG/pMTG). Similarly, we tested the opposite 253 

direction from temporal to IFG (e.g., pSTG/pMTG to pIFG). For simplicity, we refer these patterns 254 

to as "directional connections". In total, we tested eight directional connections in each 255 

hemisphere. A schematic display of the method is shown in Figure 2.  256 

 257 

Dissociating directional information from sustained activity 258 

To further investigate our interpretation of top-down and bottom-up dynamics, we 259 

conducted an additional analysis to test the null hypothesis that for each connection top-down 260 

and bottom-up effects are equal in all times and do not provide any directional information. The 261 

Pearson correlation of the decoding accuracies of top-down (trained in frontal and tested in 262 

temporal) and bottom-up effect (trained in temporal and tested in frontal) across all subjects for 263 

each connection was calculated. If the null hypothesis were true, we would expect a strong 264 

correlation between the two, as both top-down and bottom-up occur in the same time interval; 265 

that is, sustained activity, i.e. decoding accuracy has a squared shape and does not provide any 266 

directional information. Conversely, if the null hypothesis were rejected, top-down and bottom-up 267 

could exhibit distinct temporal patterns, which would indicated that there is valid directional 268 

information.  269 

 270 

Statistical analysis 271 

(A) Inter-regional temporal generalization MVPA 272 

For each directional connectivity between a pair of ROIs, cluster-based statistics were 273 

applied (Maris and Oostenveld, 2007). We used P < 0.025 as the initial threshold, 1000 274 
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permutations, and one-tailed one-sample t-tests as the test statistics against the chance level for 275 

binary classifier. We estimated the empirical chance level using simulations by shuffling the labels 276 

100 times and performed the temporal generalization for all subjects and connections. The 277 

temporal generalization matrix was flattened and gained 10000 shuffled accuracies. To generate 278 

a null distribution, values were pooled across all subjects and connections. The null distribution 279 

was Gaussian with mean at 0.5. Therefore, the empirical chance level for our case was 0.5. Thus, 280 

we used 0.5 as the chance level in our test statistic. In addition, to correct for 16 directional 281 

connectivity tests, we applied false discovery rate (FDR) method at 0.025 thresholds. The 0.025 282 

thresholds were chosen to account for the one-tailed t-test. For each connection, we considered 283 

the first 3 clusters as they represent the strongest effect. In summary, we applied FDR on 16 × 284 

3= 48 tests. 285 

 286 

(B) Dissociating directional information from sustained activity 287 

We converted the r values from correlation analysis to z-values using the Fisher-z-288 

transformation formula. The critical value that corresponds to p=0.05 for Fisher-z-transformed 289 

Pearson correlation coefficient with n=20 is Fisher-z=0.48. We used cluster-based statistics 290 

(Maris and Oostenveld, 2007), 1,000 permutations, and two-tailed one-sample t-tests against the 291 

critical Fisher-z value of 0.48. To generate the null distribution, we shuffled the subjects and 292 

calculated the r values and converted them to Fisher-z-values at each permutation. To correct for 293 

8 connections, we applied FDR correction at the qFDR = 0.05 threshold. For each connection, we 294 

considered the first positive cluster, which means the decoding accuracies of top-down and 295 

bottom-up effects are positively correlated.   296 

  297 
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Results 298 

 299 

Information flow from temporal areas to IFG 300 

We tested for across-areal generalization by training the classifier on MTG and STG 301 

evoked response activity and then testing this classifier on IFG activity. Any cluster above the 302 

diagonal shows how earlier time in temporal areas affect future time in frontal, which we interpret 303 

as reflecting bottom-up-type influences. We observed this pattern in five out of 6 significant 304 

connections (Figure 3). These patterns included from influences from the left pSTG to left pIFG, 305 

left pMTG to left pIFG, left aMTG to left aIFG, right pSTG to right pIFG, and right pMTG to right 306 

pIFG. The left pSTG influenced pIFG processing at multiple time intervals starting from 250ms 307 

and extended later to 500ms (Figure 3A). From the left pMTG to pIFG and from the left aMTG to 308 

aIFG, there was a continous bottom-up effect from 50ms to 450 and 500ms respectively (Figure 309 

3C-D). In the case of connectivity patterns from the right pSTG to pIFG and from the right pMTG 310 

to pIFG, the bottom-up effects were more discontinous (Figure 3E-F). 311 

 312 

Information flow from IFG to temporal areas 313 

Analogously to the above section, we tested for across-areal generalization by training the 314 

classifier on IFG evoked response activity and then testing this classifier on STG and MTG 315 

activity. We found significantly larger than chance level (50%) accuracy in 6 connections corrected 316 

for multiple comparisons (Figure 4). These included the left aIFG to left aSTG, left aIFG to left 317 

aMTG, left pIFG to left pMTG, right pIFG to right pMTG, right pIFG to right pSTG, and right aIFG 318 

to right aSTG. The temporal generalization dynamics were different in each connection. When 319 

the cluster expands above the diagonal, it shows that at each time, the classifier trained in IFG is 320 

predictive of future time points in temporal-cortex areas. We interpret these kinds of patterns as 321 

reflecting top-down influences from IFG to temporal areas. From left aIFG to left aSTG and aMTG, 322 
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there were effects up to 250ms and 450ms respectively that started as early as 50ms and were 323 

sustained for at least 200ms (Figure 4A-B). The effect from left pIFG to pMTG started later around 324 

250ms and continued for about 200ms and affected time interval after 450ms (Figure 4C). The 325 

earliest frontal effect seemed to start from right pIFG to pMTG and pSTG (Figure 4D-E), where 326 

the influence on pMTG lasted longer time up to 400ms, whereas in pSTG up to around 150ms. 327 

There was also a continuous effect from right aIFG to aSTG around 200ms for a short duration. 328 

Furthermore, from right aIFG to aSTG, there was a small effect before 200ms.   329 

Those connections that are significant in both directions are plotted side-by-side in Figure 330 

5 for comparing the temporal specificity of the top-down and bottom-up effects.  331 

 332 

Dissociating directional information from sustained activity 333 

Out of eight tested connections, the connection between the left pSTG and pIFG was 334 

significant, with p=0.04. In Figure 6, the Fisher-Z-transformed values of the correlations of top-335 

down and bottom-up decoding accuracies across all subjects for this connection and the 336 

significant cluster within are shown.  337 

 338 

Discussion 339 

In this study, we used a novel approach to investigate bottom-up and top-down influences 340 

between inferior frontal and temporal cortex areas, using source estimates of event-related MEG 341 

responses to low-predictability vs. high-predictability nouns.  342 

Our rationale rests on the utility of temporal generalization methods in multivariate 343 

classification of brain data from specific brain areas: The idea is that when the classifier 344 

performance exceeds chance level in the testing area at future time points, this means that brain 345 

activity in the training area contain information that helps predicting the LP vs HP condition future 346 
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time points in the testing area. By examining instances when the classifier training was based at 347 

an earlier time period than the testing, we made inferences on potential directional influences in 348 

language processing underlying N400 generation. 349 

We present evidence for both bottom-up influences from STG/MTG to IFG and top-down 350 

influences from IFG to STG/MTG in both hemispheres. The strongest bottom-up effects were 351 

observed from the left pSTG/pMTG to the left pIFG and from the left aMTG to the left aIFG. In 352 

parallel, the strongest top-down effects were from the left aIFG to the left aSTG/aMTG and from 353 

the right pIFG to the right pSTG/pMTG. These results suggest that bottom-up and top-down 354 

influences are transferred through both ventral and dorsal pathways, and that they are not 355 

restricted to a certain path. The dorsal and ventral pathways are the two main structural pathways 356 

supporting language processing. The ventral pathway connects the temporal cortex to inferior 357 

frontal regions via the extreme fiber capsule system (EFCS) and the uncinate fascile (UF) and 358 

the dorsal pathway connects the posterior frontal area to posterior part of the temporal cortex via 359 

the arcuate fascile (AF) and the superior longitudinal fascicle (SLF) (Friederici, 2012). Moreover, 360 

our results suggest that bottom-up influences are mostly left lateralized whereas top-down 361 

influences are present in both hemispheres. In our previous study (Maess et al, 2016), focused 362 

on the evoked responses of the verbs and the nouns, we observed a reduction of the N400 363 

response for highly predicted nouns as expected and the opposite pattern for the noun-preceding 364 

verbs. Highly predictive verbs yielded stronger N400 amplitude compared to less predictive verbs. 365 

Enhanced activity for highly predictive relative to less predictive verbs has been interpreted to 366 

reflect pre-activations of semantic features associated with the expected nouns. Therefore, it is 367 

interesting that top-down influences start at very early latencies, almost immediately after the 368 

stimulus onset. In contrast, the majority of bottom-up influences started at least with a 100 ms 369 

delay.  The finding is also in agreement with an interpretation that feedback from IFG to temporal 370 

cortex is stronger for the LP condition than the HP condition, since integrating LP nouns in context 371 
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requires a stronger/longer availability of the noun than in the HP condition (Baggio and Hagoort, 372 

2011; Hagoort, 2017; Mamashli et al., 2019b). 373 

It is worth to note that top-down and bottom-up effects have distinct temporal patterns in 374 

each connection, as evidenced by our analysis which dissociated directional information from 375 

sustained activity. In the case of sustained activity and no temporal separation of top-down and 376 

bottom-up effects, there should have been strong correlations between them. We found only in 377 

one connection (left pSTG and left pIFG) for which such a correlation effect was present (Figure 378 

6). 379 

Thus, we conclude that in the five connections in which a significant effect was found in both 380 

directions (Figure 5), bottom-up and top-down effects occurred at different time latencies. 381 

Interestingly, the left pSTG-pIFG connection did not show a significant bidirectional effect, but 382 

only a bottom-up one (Figure 3).  383 

A number of competing models have been proposed on top-down and bottom-up 384 

influences between temporal and frontal areas during sentence comprehension (Friederici 2012). 385 

Verifying such models has been difficult due to the complications in estimating causality in human 386 

recordings. Indeed, to date, only a few previous studies have estimated the causal connections 387 

between temporal and frontal areas in predictive speech processing using more classic 388 

techniques. Cope et al. (2017) found bi-directional fronto-temporal causal connections using 389 

Granger causality in distinct frequency bands when spoken words were matched with visual 390 

presentation. Using similar method in a reading task, Schoffelen et al. (2017) found a bottom-up 391 

connection from pMTG to IFG and top-down and bottom-up connections between IFG and aMTG. 392 

A recent study (Schroen et al., 2023) using a subset of our stimulus material investigated temporo-393 

frontal causal influences with a combined transcranial magnetic stimulation and 394 

electroencephalography approach. Interestingly, using this completely different approach, they 395 

also observed early bottom-up influences from left pSTG to left IFG and late top-down influences 396 

(300-500ms) from left IFG to left pSTG. Consistent with these previous results, the present results 397 
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highlight the importance of bidirectional interactions between functionally specialized brain 398 

regions to facilitate complex language processing (Friederici 2012). Our novel inter-regional 399 

temporal generalization could facilitate quantitative testing of theoretical models proposed for 400 

language processing in general (Hickok and Poeppel, 2004, 2007; Friederici, 2011) and N400 401 

processing in particular (Lau et al., 2008).  402 

Estimating top-down and bottom-up influences using neuroimaging data has been 403 

challenging. One of the inherent properties of these connections is that bottom-up influences, 404 

which originate at lower levels of the processing hierarchy, are stimulus-driven and time-locked.  405 

In turn, top-down influences, which originate at higher hierarchical levels and associated with 406 

cognitive processing, can be presumed to jitter in time and vary more prominently subject by 407 

subject, for example, due to individual differences in cognitive capacities. The more pronounced 408 

variability within and between individuals weakens the estimated representations of top-down 409 

influences in time relative to bottom-up influences, making their quantitative estimation harder. 410 

This could be one of the factors why in the present study, the average decoding accuracy was 411 

stronger in analyses, which were trained at the lower and tested at the higher hierarchical levels 412 

(i.e., predominantly bottom-up) than vice versa (i.e., predominantly top-down).  413 

Consistent with the best practices of MEG/EEG research (Gross et al., 2013), the present 414 

MEG data were preprocessed using a long-duration, steep-slope FIR filter designed with 415 

frequency-domain techniques. This non-causal (delay-compensated) filter offers zero-phase and 416 

zero-delay, making it well-suited for investigating event-related responses such as the N400. The 417 

potential limitation of these non-causal filters is that they may introduce time leakage in both 418 

forward and backward directions, which could slightly influence the onset and offset of effects. 419 

However, in the present study, the temporal clusters of statistically significant effects spanned 420 

several hundred milliseconds, which reduces the concern that the effect were significantly 421 

influenced by the leakage problem. On the other hand, using alternative approaches such as 422 

causal filters, which can avoid leakage from future (but not past) time points, may introduce delays 423 
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and phase distortion, making them suboptimal for studies of event-related effects in MEG or EEG. 424 

Future research is therefore needed to evaluate how different filtering strategies affect the 425 

decoding accuracy of inter-regional temporal generalization. 426 

 427 

Conclusion 428 

In summary, we implemented a novel method to estimate top-down (or feedback) and bottom-up 429 

(or feedforward) influences using cross-regional temporal generalization in MEG decoding. 430 

Aiming to understand the information flow in N400 generation in a simple language paradigm, we 431 

found IFG feeding back to STG/MTG bilaterally and STG/MTG feeding forward to IFG left-432 

lateralized. Our results are consistent with the long-standing but empirically challenging notion 433 

that dynamic top-down and bottom-up influences between IFG and temporal areas drive N400 434 

generation.  435 

 436 

Data and Code Availability: Data and code will be available upon request. 437 
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Figure captions 589 

 590 

Figure 1: ROIs and sub-regions or sub-ROIs in left and right hemisphere. 591 

 592 

Figure 2: A schematic display of the method. (A) Examples of ROIs and sub-ROIs in pIFG and 593 

pSTG. SVM classifier is trained on four features from four sub-ROIs activity in pIFG to classify LP 594 

from HP conditions and then tested on the four features extracted from pSTG sub-ROI activity. 595 

Similarly, the same process was done from pSTG to pIFG. (B) SVM classifier is trained at each 596 

time point of pIFG activity and tested on all time points of pSTG. The accuracy of model from 597 

pSTG test data is used to create temporal generalization matrix. Here, one time point t0 and t1 are 598 

shown as an example.  599 

 600 

Figure 3: Temporal generalization decoding matrix averaged over all subjects. The white contour 601 

indicates significant decoding values against the chance level. SVM classifier is (A) trained on the 602 

left pSTG and tested on the left pIFG, (B) trained on the left pMTG and tested on the left pIFG, 603 

(C) trained on the right aSTG and tested on the right aIFG, and (D) trained on the right pMTG and 604 

tested on the right pIFG, (E) trained on the right pSTG and tested on the right pIFG, (F) trained 605 

on the right pMT and tested on the right pIFG. (G) The ROIs and the significant connections from 606 

(A) to (F) are displayed in a cortical surface representation. 607 

 608 

Figure 4: Temporal generalization decoding matrix averaged over all subjects. The white contour 609 

indicates significant decoding values against the chance level. The SVM classifier is (A) trained 610 

on the left aIFG and tested on the left aSTG, (B) trained on the left aIFG and tested on the left 611 

aMTG, (C) trained on the left pIFG and tested on the left pMTG, (D) trained on the right pIFG and 612 
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tested on the right pMTG, (E) trained on the right pIFG and tested on the right pSTG, and (F) 613 

trained on the right aIFG and tested on right aSTG. (G) The ROIs and the significant connections 614 

from (A) to (F) are displayed in a cortical surface representation. 615 

 616 

Figure 5: Significant connections that are bi-directional. The left panel shows the bottom-up 617 

effects, and the right panel is the top-down effects.  618 

 619 

Figure 6: Fisher-z-transformed correlation values of decoding values of top-down and bottom-up 620 

effects for the connection between left-pSTG and pIFG. 621 

 622 
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