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In demanding listening situations, a listener’s motivational state may affect their cognitive investment. Here, we aim to delineate how
domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influ-
ences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while
the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener’s motivational state were
orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty
impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual’s motiva-
tional state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional post-
processing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and
higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the
motivational state acts as an attentional top–down neural means of postprocessing the auditory input in challenging listening situations.

Key words: cognitive demand; event-related field; gap detection; motivation intensity theory; neural alpha power; pupil dilation;
reward prospect

Significance Statement

How does an individual’s motivational state affect cognitive investment during effortful listening? In this simultaneous pupil-
lometry and magnetoencephalography study, participants performed an auditory gap-detection task while their motivational
state was manipulated through varying prospect of a monetary reward. The pupil size directly mirrored this motivational
modulation of the listening demand. The individual’s motivational state also enhanced top–down attentional postprocessing
of the auditory event but did neither change auditory sensory processing nor pregap parietal alpha power. These data suggest
that a listener’s motivational state acts as a late attentional top–down effect on auditory neural processes in challenging
listening situations.

Introduction
The motivational state of a person influences whether they are
willing to invest cognitively in demanding listening contexts

(Brehm and Self, 1989; Richter et al., 2016; Kraus et al., 2023a).
That is, a person who sees no intrinsic (e.g., enjoyment) or extrin-
sic (e.g., financial) value in listening and is thus in a low motiva-
tional state may be more likely to disengage from listening than
someone who is highly motivated; especially so under highly
demanding conditions (Brehm and Self, 1989; Pichora-Fuller
et al., 2016; Richter et al., 2016; Herrmann and Johnsrude,
2020). When listening conditions are less demanding, a person
may still engage in listening despite being little motivated
(Brehm and Self, 1989; Richter et al., 2016). Although this inter-
acting influence of task demands and motivation (Fig. 1C) is
established theoretically and empirically, for example, for cogni-
tive control tasks (Parro et al., 2018; Yee and Braver, 2018), little
research has been conducted to investigate the impact of task
demands and motivation on listening under challenges and to
characterize the underlying neurophysiological mechanisms.
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The noradrenergic (NE) modulation emerging from the locus
ceruleus (LC) in the brainstem is one driver of pupil dilation
(Joshi et al., 2016; Joshi and Gold, 2020). The LC–NE system is
sensitive to attention (Vazey et al., 2018) and has a role in opti-
mizing task performance and task engagement (Aston-Jones and
Cohen, 2005a). Accordingly, pupil dilation as a proxy of LC–NE
activity has often been used as an indicator of cognitive invest-
ment: the pupil dilates as a task becomes more difficult
(Kahneman and Beatty, 1966; Zekveld et al., 2010; Koelewijn
et al., 2012; Winn et al., 2015; Wendt et al., 2016; Ohlenforst
et al., 2018; Kadem et al., 2020). Moreover, pupil size dynamics
during high listening demands are known to be modulated by
an individual’s motivational state (Bijleveld et al., 2009; Zhang
et al., 2019; Alfandari et al.,2023), recently confirmed by us using
highly controlled noise stimuli (Kraus et al., 2023a) that will also
be used in the present study. The motivation-driven additional
cognitive investment indexed by pupil dilation predicted better
behavioral outcomes (Kraus et al., 2023a).

Neural oscillatory alpha power is sensitive to listening
demands, likely reflecting top–down attentional modulation
(Weisz et al., 2011; Obleser et al., 2012; Petersen et al., 2015;
Wöstmann et al., 2015; Dimitrijevic et al., 2017; Paul et al.,
2021; Herrmann et al., 2023; Kraus et al., 2023b). However, in
studies using highly controlled stimulus designs, in which task
difficulty was manipulated without changing stimulus acoustics,
an increase in alpha power has only been observed sometimes,
for example, when relevant sound information occurs shortly
after the stimulus onset (Herrmann et al., 2023), but not when
relevant sound information occurs late in a stimulus and when
visual stimuli are presented concurrently (Kraus et al., 2023b).
Manipulating motivation orthogonally to task demands may
help identifying the neural correlates of cognitive investment
during listening. That is, neural activity in brain regions that
mediate top–down control of attention (e.g., cingulate cortex)
is modulated by motivation (Small et al., 2005). Consistently,
occipital alpha power in a visual search task has been sensitive
to monetary rewards (Sawaki et al., 2015), raising the possibility
that alpha power may be modulated by a person’s motivational
state during listening and, in turn, providing an opportunity to
identify the neural mechanisms underlying challenging listening.

Apart from neural signals possibly indexing attention net-
works directly, neural activity elicited by auditory stimuli may
provide additional insights into motivation influences on neural
processing during listening. Auditory sensory responses
∼100 ms after the stimulus onset are enhanced as the saliency
of a sensory input increases (for a review, see Näätänen and
Picton, 1987) and when individuals attend to, compared with
ignore, auditory stimuli (Hillyard et al., 1973) but effects of moti-
vation have not been observed (Goldstein et al., 2006; Krebs et al.,
2013). Motivation rather seems to modulate neural signals
∼300 ms after the stimulus onset (Goldstein et al., 2006; Baines
et al., 2011; van den Berg et al., 2014).

The current study will use magnetoencephalography (MEG)
to investigate the neurophysiological changes associated with lis-
tening demands under different motivational states (using a
reward manipulation). We will use pupil size data as a bench-
mark for modulatory influences of motivation on cognitive
investment during listening (Kraus et al., 2023a). Using MEG,
we will investigate whether reward prospect impacts auditory
sensory processing and how reward prospect influences atten-
tional processing under varying task demands (alpha power).
In detail, we expect increased attentional processing under high
motivation when listening is hard, but no additional motivational

boost when listening is easy (Fig. 1C). Additionally, we will inves-
tigate the relationship among changes in the pupil size, sensory
responses, and neural alpha power and to behavioral listening
outcome.

Materials and Methods
Participants. Thirty-seven adults aged between 18 and 34 years par-

ticipated in the current study (mean, 23.43 years; SD, 4.05 years; 11
males and 26 females; all right-handed). None of the participants
reported having a history of neural disorders or hearing problems.
Participants gave written informed consent before participation and
received an honorarium of $15 CAD per hour. Their motivation was
manipulated through financial rewards. Participants could earn an addi-
tional $15 CAD depending on their behavioral performance. The study
was conducted at the Rotman Research Institute at the Baycrest
Academy for Research and Education. The study protocols are in accor-
dance with the Declaration of Helsinki and were approved by the local
ethics committee of the Rotman Research Institute at the Baycrest
Academy for Research and Education.

Experimental environment. MEG data were recorded with a
275-channel axial gradiometer MEG device (CTF-MEG Neuro
Innovations) in an electromagnetically shielded room. Participants
were placed in a seating position with their head centered in the MEG
helmet. A back-projection screen was placed ∼70 cm in front of partic-
ipants. An eye-tracking camera (EyeLink 1000 Plus, SR Research) was
mounted to the screen. The experimental stimulation was controlled
by a laptop (Windows 10) running Psychtoolbox (version 3.0.14) in
MATLAB. Sounds were presented via an external sound card (RME
Fireface UCX II) and delivered binaurally via MEG-compatible insert
earphones (E-A-RTONE 3A, 3M). A button response box was used to
record participants’ behavioral responses. After the MEG experiment,
the location of the three fiducials (left tragus, right tragus, nasion) and
the shape of the head were digitized using a 3-D digitizer (Polhemus
FASTRAK).

Experimental design. The experimental design was similar to the one
used in Kraus et al. (2023a). An auditory gap-detection task was chosen
because the timing and degree of listening demand can be more tightly
controlled than for speech materials that have been used in previous
studies (Kraus et al., 2023a). In fact, our previous work shows effects
of motivation on behavior and pupil size, and a critical interaction in
line with theoretical frameworks (Brehm and Self, 1989; Richter et al.,
2016; Fig. 1C), which studies using speech materials have not been
able to observe. The experimental control afforded by the auditory gap-
detection task (Henry and Obleser, 2012; Henry et al., 2014, 2017;
Herrmann et al., 2023; Kraus et al., 2023a, b) facilitates the analysis of
the interaction of motivation, listening demand, and listening outcome
(Kraus et al., 2023a).

Participants were presented with 5.2 s white-noise sounds that each
contained one gap (Fig. 1) and pressed a button with the right index
finger on the response box as soon as they detected the gap. The gap
could occur at 1 of the 70 randomly selected time points between 2.2
and 4.2 s after the noise onset (linearly spaced). Auditory stimuli were
presented at 45 dB above the participant’s sensation level, which was
determined for each ear prior to the experiment using an audiometer.
There was no visual stimulation during the presentation of the white
noise. Participants were asked to keep their gaze on the black screen
and not close their eyes.

The 2 × 2 design included the factors of task difficulty (easy, hard) and
reward prospect (reward-irrelevant, reward-relevant). Task difficulty was
manipulated via the duration of the gap in the noise sound. In the hard
condition, gap duration was individually titrated to ∼65% gap-detection
performance in training blocks prior to the main experimental blocks
(4–6 training blocks of 2 min each). Gaps in the easy condition were
twice as long (Kraus et al., 2023a, b).

Half of the trials were paired with the possibility of receiving an addi-
tional financial reward based on the participant’s performance on these
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trials (reward-relevant trials). In contrast, the other half of the trials were
not paired with any reward (reward-irrelevant trials). Specifically, after
the experiment, three trials for each of the two difficulty levels were cho-
sen from the reward-relevant trials (Tusche and Hutcherson, 2018; Teoh
et al., 2020; Cole et al., 2022; Kraus et al., 2023a). Participants could gain
$15 CAD in addition to their hourly compensation rate if their average
performance across these six trials was above 80%. All of the participants
reached this threshold and got the reward.

Trials were presented in 14 blocks, each containing 20 trials. In half of
the blocks, task difficulty was easy, whereas task difficulty was hard in the
other half. Easy and hard blocks alternated. The difficulty of the starting
task was counterbalanced across participants. At the beginning of each
block, participants received written information about the task difficulty
(easy or hard) of the upcoming block. Hence, participants had prior
knowledge about whether detecting the gap would be easy or hard. In
a random order, half of the 20 trials per block were reward-relevant trials,
whereas the other half were reward-irrelevant trials.

An auditory cue consisting of a guitar or a flute sound occurred
before each white-noise sound, indicating whether a trial was
reward-relevant or reward-irrelevant. The pairings of guitar and flute
sound to reward-relevant and reward-irrelevant trials were counterbal-
anced across participants. Participants familiarized themselves with the
cue–reward association during training trials before the experiment.
Overall, the experiment contained 70 white-noise sounds per task difficulty
(easy, hard) × reward prospect (reward-irrelevant, reward-relevant)
condition, resulting in 280 trials.

After the experiment, participants completed a questionnaire regarding
their use of the reward cues. They first indicated which auditory cue was
associated with reward-relevant trials. We then asked them to rate the
following statement: “I used the auditory cues (guitar and flute) to distin-
guish between important and unimportant conditions” on a six-point scale
ranging from “strongly disagree” over “disagree,” “somewhat disagree,”
“somewhat agree,” and “agree” to “strongly agree.” Participants rated this
statement twice, separately for the easy and the hard conditions.

Analysis of behavioral data. Any button press within 0.1 to 1.5 s after
the gap onset was defined as a hit (coded 1). Trials for which no button

was pressed within this time window were considered a miss (coded 0).
The time between the gap onset and the button press was calculated as
the response time. The time at which the gap occurred within the sound
was included in the statistical modeling (see below, Statistical analysis) to
account and test for an expected hazard effect (higher accuracy and faster
response times for later compared with early gaps relative to white-noise
onset; Niemi and Näätänen, 1981; Nobre et al., 2007; Herrmann et al.,
2023). Response-time data were log-transformed for statistical analysis
to obtain values closer to a normal distribution.

Pupil data recording and preprocessing. Eye movements and pupil
size of the right eye were continuously recorded using an EyeLink
1000 Plus eye tracker (SR Research). Data were recorded as an additional
channel of the MEG data acquisition. MATLAB (MathWorks) was used
for the preprocessing and analyses of the data. To detect eyeblinks, we
determined the threshold in the pupil channel above which the eye
tracker had lost the pupil in case of a blink. All data points above this
threshold were coded as invalid (NaN). Additionally, 100 ms before
and 200 ms after above threshold time points were also coded as NaN.
NaN-coded data points were linearly interpolated. Pupil data were sub-
sequently low-pass filtered at 4 Hz (Butterworth, fourth order) and
divided into epochs ranging from −2 to 6.2 s time-locked to the white-
noise onset. An epoch was excluded if >40% of the trial had been
NaN-coded prior to interpolation. If >50% of the trials in any condition
were excluded, the full pupil dataset of the respective participant was
excluded from analysis (N= 12). The high number of excluded pupil
datasets is in part due to the technical challenge combining the concur-
rent recording of the pupil size and MEG. Pupil size data were down-
sampled to 50 Hz. The polarity of the pupil data was inverted at the
analysis stage because the pupil recordings through the MEG were
inverted (we determined this in a brief black vs white screen experiment
to elicit dilation vs constriction, respectively). For each trial, the mean
pupil size in the −1.5 to −1.1 s time window was subtracted from the
pupil size at every time point of the epoch (baseline correction). This
baseline time window was chosen to avoid contamination of the auditory
cue which was presented at −1 s. For each participant, single-trial time
courses were averaged, separately for each condition.

Pupil size analysis. For the statistical analysis (described below,
Statistical analysis) of the effects of task difficulty and reward prospect,
pupil size data were averaged across the time window ranging from
2.2 s (onset of gap window) to 6.2 s (end of trial).

Similar to our previous approach (Kraus et al., 2023a), we investi-
gated whether a smaller pupil size is associated with an increased prob-
ability that a participant misses a gap or responds slower to the gap.
Therefore, pupil size data (baseline-corrected to −1.5 to −1.1 s to the
noise onset) were time-locked to the gap onset. For statistical analysis,
the pupil size was averaged across the −0.5 to 0 s time window, time-
locked to the gap onset.

To illustrate the association between the pupil size and response time
(Fig. 3E), we created two groups of trials: fast and slow trials. Fast trials
were defined as those with response times equal to or faster than 0.75 SD
of the mean. Slow trials were defined as those with response times equal
to or slower than 0.75 SD of the mean. The threshold was chosen as a
good compromise between too many and too few trials per group. The
grouping was done separately for reward-relevant and reward-irrelevant
trials to ensure the same number of trials was used for each group and
reward condition. Additionally, we included only trials into the group
of fast trials if their gap-onset time matched with one trial of the slow tri-
als and vice versa to ensure that there was no difference in gap-onset
times between slow and fast trials. The pupil size of the averaged slow
versus fast trials was compared using a one-sample t test per time point.
To account formultiple comparisons, p values were corrected across time
points using a false discovery rate (FDR) of q= 5% (Benjamini and
Hochberg, 1995).

MEG recording and preprocessing. MEG data were recorded using a
CTF-MEG with 275 axial gradiometers at a sampling frequency of
1,200 Hz.

Figure 1. Experimental design. A, Auditory gap-detection task: participants’ task was to
detect a gap within 5.2 s white-noise sound. The gap occurred randomly between 2.2 and
4.2 s postnoise onset (gap window, marked by the gray line). B, Two-by-two design: task
difficulty was determined by the gap duration (titrated to 65% detection performance for
the hard condition and twice as long in easy trials). An auditory cue 1 s before each trial
indicated whether the upcoming trial was reward-relevant or not. C, Hypothesis: according
to the Motivation Intensity Theory (gray lines; Brehm and Self, 1989; Richter, 2016), partic-
ipants should invest cognitively under the hard listening condition only when motivated to
succeed (solid line) but should give up investing resources when they are less motivated
(dashed line). The colored dots show our hypothesis. Figure design follows Kraus et al.
(2023a).
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MEG data analysis was performed with the FieldTrip MATLAB tool-
box (2019-09-20; Oostenveld et al., 2011). To avoid numerical issues dur-
ing processing due to very small numbers associated with MEG
recordings in the Tesla range, wemultiplied all MEG data with 1012, lead-
ing to data in the picotesla range. Data were filtered with a 100 Hz low-
pass (Hann window, 89 points), a 0.7 Hz high-pass (Hann window, 2,869
points), and a 60 Hz elliptic band-stop filter to suppress line noise. Data
were cut into 10.2 s trials ranging from −3 to 7.2 s time-locked to the
noise onset. For the calculation of independent component analysis
(ICA), these trials were divided into 1 s snippets. Components contain-
ing blinks, lateral eye movement, and heart-related activity were iden-
tified through visual inspection. The continuous data (filtered) were
projected to ICA space using the unmixing matrix. The previously
identified components containing artifacts were removed from the
continuous data, and the data were then back-projected to the original
275 sensors using the mixing matrix. Data were then low-pass filtered
at 30 Hz (Hann window, 111 points) and divided into trials of 10.2 s
(−3 to 7.2 s time-locked to the noise onset). Data were downsampled
to 600 Hz, and trials that exceeded a signal change of >4 picotesla in
any of the MEG channels were excluded from analysis.

Analysis of event-related fields for the gap onset and button response.
Data were transformed from axial to planar gradiometers (Vrba and
Robinson, 2001). Planar gradiometers show the strongest sensitivity to
sources that originate from directly below them (Hämäläinen, 1995;
Vrba and Robinson, 2001), which makes the interpretation of topo-
graphical distributions more intuitive. The signal at the two planar gra-
diometers forming one pair was combined by calculating the sum. This
resulted in signals at 275 sensors.

For the analysis of event-related fields (ERFs), we focused on hit tri-
als, and each trial was time-locked to the respective gap-onset time. To
investigate evoked auditory sensory processing, data were averaged
across temporal sensors (MRF67, MRT13, MRT14, MRT15, MRT23,
MRT24, MRT25, MRT2, MRT35, MRT36, MLF67, MLT13, MLT14,
MLT15, MLT23, MLT24, MLT25, MLT26, MLT35, MLT36). For illus-
trative purposes, trials were averaged separately for each of the four con-
ditions and baseline-corrected by subtracting the mean amplitude in the
time window before the gap onset (−0.5–0 s) from each time point. For
the statistical analysis, data were averaged across the time window of the
M100 component of the ERF (0.09–0.13 s; Näätänen and Picton, 1987).
The M100 time window was selected to investigate possible reward-
prospect influences on auditory sensory processing.

For an exploratory analysis of the late ERF component with a parietal
topography (Fig. 4A,C), hit trials were time-locked to a person’s response
time in the respective trial and averaged across parietal sensors (MLC16,
MLC17, MLC24, MLC25, MLC31, MLC32, MLC41, MLC42, MLC53,
MLC54, MLC55, MLC61, MLC62, MLC63, MRC16, MRC17, MRC24,
MRC25, MRC31, MRC32, MRC41, MRC42, MRC53, MRC54,
MRC55, MRC61, MRC62, MRC63, MLP11, MLP12, MLP21, MLP22,
MLP23, MLP31, MLP32, MLP33, MLP34, MLP35, MLP41, MLP42,
MLP43, MLP44, MLP45, MLP54, MLP55, MLP56, MLP57, MRP11,
MRP12, MRP21, MRP22, MRP23, MRP31, MRP32, MRP33, MRP34,
MRP35, MRP41, MRP42, MRP43, MRP44, MRP45, MRP54, MRP55,
MRP56, MRP57, MZC03, MZC04, MZP01). For illustrative purposes,
data were baseline-corrected using the same time window as for the
gap-locked data (−0.5–0 s time-locked to the gap onset). For statistical
analysis, single-trial response–locked data were averaged across the
0.1–0.6 s time window (time-locked to button response) to investigate
task difficulty and reward-prospect effects on the response-related com-
ponent (Fig. 4D).

Analysis of time–frequency power. In order to analyze oscillatory
activity in the alpha frequency range (8 to 12 Hz; Klimesch et al., 2007;
Jensen and Mazaheri, 2010; Weisz et al., 2011), single-trial time–domain
data (after planar gradiometer calculation) were convolved with Morlet
wavelets. Complex wavelet coefficients were calculated for frequencies
ranging from 8 to 12 Hz (1 Hz steps) and time points ranging from
–2 to 6.2 s (0.04 s steps) time-locked to the noise onset, separately
for each trial, sensor, and participant. For the visualization of

time–frequency data across a wider frequency range, calculations were
also done for frequencies ranging from 1 to 20 Hz in steps of 1 Hz and
in time steps of 0.16 s. We analyzed data first time-locked to the noise
onset and then time-locked to the gap onset.

For the analysis of data time-locked to the noise onset (Fig. 5), power
was calculated by squaring the magnitude of the complex wavelet coeffi-
cients separately for each trial, sensor, and time–frequency bin. Data for
the two corresponding planar gradiometers of a pair were combined by
calculating the sum, which resulted in power data for 275 sensors. For
visualization purposes, time–frequency power per condition was aver-
aged across trials and baseline-corrected to decibel power change: data
at each time point were divided by the mean power in the baseline
time window (−1.5 to −1.1 time-locked to the noise onset) and subse-
quently log10 transformed. To visualize the difference in power between
hit and miss trials, we categorized trials as hit and miss trials and aver-
aged them across parietal sensors. For statistical analysis, parietal alpha
power in the 1.7 to 2.2 s time window (time-locked to the noise onset)
was averaged. This time window was chosen because it precedes the
time window during which a gap could occur (2.2–4.2 s).

For the investigation of alpha activity changes related to gap detec-
tion, we time-locked the data to the gap onset and focused on hit trials
only. This was done on single-trial complex wavelet coefficients, and
power calculation and gradiometer combination were performed in
the same way as for the noise-locked data above. For visualization
purposes, condition-averaged data were baseline-corrected to decibel
power change using the same time window as for the noise-locked
data (−1.5 to −1.1 s time-locked to the noise onset) and separately
averaged across parietal or temporal sensors (see section above). For
the statistical analysis, pregap alpha power for each trial was averaged
across the −0.5–0 s time window (time-locked to the gap onset).

Trials in which participants detected the gap elicited an alpha-power
suppression (Fig. 5D). We thus also investigated possible effects of task
difficulty and reward prospect on the postgap alpha-power suppression.
To this end, we calculated the latency of minimal alpha power between 0
and 1 s postgap for each condition and participant. For the statistical
analysis of the alpha power at its minimum, we averaged the data
±40 ms around the estimated latency for each trial.

Source localization. For source localization, the MRI image of the
standard brain and skull in FieldTrip toolbox was nonlinearly warped
for each participant to fit their head shape data from the Polhemus digi-
tization. An automatic FreeSurfer’s approach was used to segment the
MRI and extract the cortical mesh. This procedure ensured that the cor-
tical mesh consisted of comparable grid-point locations across partici-
pants (Alavash et al., 2021) in accordance with the Human
Connectome Project (HCP) standard atlas template (Keitel and Gross,
2016; Glasser et al., 2017). This cortical mesh served as the source model
for each participant. FieldTrip’s “singleshell” method was used to calcu-
late the inner skull surface that was used as a volume conductor model.
Subsequently, leadfields were calculated separately for each experimental
block to account for the slightly different head positions relative to the
sensors in the different MEG recording blocks.

For each participant and block, a multitaper (±2 Hz spectral smooth-
ing) fast Fourier transform (FFT) was calculated. The complex coeffi-
cients at 10 Hz that resulted from the FFT were used to calculate a
cross-spectral density matrix per block. Dynamic imaging of coherent
sources was used for source localization (Gross et al., 2001). For each
source location, a spatial filter was calculated using a participant’s cross-
spectral density matrix (dipole orientation, axis of most variance using
singular value decomposition). For each trial, spatial filter weights
were multiplied time point per time point with the complex wavelet
coefficients from the analysis that used data time-locked to the gap onset
(8–12 Hz frequency range). Power was calculated by squaring the mag-
nitude of the complex wavelet coefficients that were projected through
the spatial filter. Time–frequency source power was averaged across
the 8–12 Hz frequencies.

For the statistical analysis, we focused on two predefined regions of
interest (ROIs) according to functional parcels defined by the Glasser
atlas as available in the HCP workspace (Keitel and Gross, 2016;
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Glasser et al., 2017). We included an auditory ROI due to the auditory
nature of the task and because auditory stimulation is known to elicit
sensory alpha activity (Mazaheri et al., 2014; Wöstmann et al., 2017;
Herrmann et al., 2023; Kraus et al., 2023b). We also included a parietal
ROI, because the parietal cortex is part of the attentional networks and
is known to elicit alpha activity under task load (Rushworth et al.,
2001; Behrmann et al., 2004; Banerjee et al., 2011; Herrmann et al.,
2023; Kraus et al., 2023b). To analyze postgap alpha-power suppression
in source space, we calculated the latency of minimal alpha power
between 0 and 1 s postgap per condition, participant, and ROI. For
each trial, we then averaged the data ±40 ms around the estimated
latency.

For visualization only, hit trials were averaged for each condition and
participant. The decibel power change was calculated relative to the orig-
inal baseline time window (−1.5 to −1.1 s time-locked to the noise
onset).

Statistical analysis. A paired sample t test was used to analyze the
subjective rating of cue use. The effect size was reported as Cohen’s d
(J. Cohen, 1988).

A variety of linear mixed-effect models (LMMs) in R (v4.1.2), with
the packages lme4 and sjPlot, were used for the statistical analyses. All
LMMs included participant-specific random intercepts to account for
individual differences in the respective dependent variable. Single-trial
accuracy data were binary. Hence, for accuracy data, a generalized
LMM (GLMM) with a binomial distribution and a logit link function
was used (Tune et al., 2021; Kraus et al., 2023a). All other models
included continuous data as dependent variables, and we thus used an
LMM with a Gaussian distribution and an identity link function (Tune
et al., 2021; Kraus et al., 2023a). All continuous variables were z-scored.
All models predicting behavioral outcomes included the gap time as a
regressor to account for hazard-rate effects (Niemi and Näätänen,
1981; Nobre et al., 2007; Herrmann et al., 2023). For all statistical models
using neurophysiological data as dependent variable, data averaged
across the baseline time window were included in the model as a separate
regressor instead of using baseline-corrected data as the dependent var-
iable (Alday, 2019).

First, LMMs were calculated to analyze the influence of the two
experimental factors on behavioral outcomes, pupil size, M100 compo-
nent, and alpha power. The models included effects of task difficulty
(easy, hard), reward prospect (reward-irrelevant, reward-relevant), and
task difficulty × reward prospect interaction. Task difficulty and reward
prospect were categorical predictors and were, therefore, deviation-
coded [i.e., −0.5 (easy, no-reward) and 0.5 (hard, reward)].

Second, LMMs were calculated to analyze the influence of the pupil
size or parietal alpha power on accuracy or response time. For these anal-
yses, only hard trials were used because of the large variance in the beha-
vioral measures between easy and hard conditions and the ceiling
performance for the easy condition. The pupil size and parietal alpha
power were used as independent variables in these models; therefore,
baseline correction was needed before inclusion into the respective statis-
tical model. Including the baseline data as an additional regressor (as
described for the prediction of pupil/alpha data) would lead to collinear-
ity issues. For pupil size data, we used subtractive baselining (see above,
Pupil data recording and preprocessing), which can be used on single tri-
als (Mathôt et al., 2018). However, decibel power baselining should not
be used on single-trial data (M. X. Cohen, 2014). To account for this, we
calculated a model with pregap alpha power as the dependent variable
and alpha power within the baseline time window as the only indepen-
dent variable. The residuals of this model served as the alpha-power
regressor in the models to predict behavioral outcomes (Alday, 2019).

To disentangle associations of the pupil size/alpha power and beha-
vior at the trial-by-trial state level (i.e., within-participant) from associ-
ations at the trait level (i.e., between-participants), we included two
separate regressors associated with changes in the pupil size/alpha power.
The between-participant regressor contained trial-averaged pupil size/
alpha power per individual, whereas the within-participant regressor
contained the single-trial pupil size/alpha power relative to the individual
mean (Bell et al., 2019; Tune et al., 2021; Kraus et al., 2023a, b). Reward

prospect and gap time were included as regressors to account for their
potential influence on behavior. A random slope for the within-
participant effect was included whenever it improved the respective
model and did not lead to missing convergence of the model.

Third, an LMM was calculated to analyze the relationship between
the M100 amplitude and the postgap alpha power. Reward prospect,
task difficulty, and their interaction were included as regressors to
account for their potential influence on postgap alpha power. A within-
participant and a between-participant regressor were included for the
M100 amplitude regressor as well as a random slope for the within-
participant effect.

Fourth, LMMs were calculated to analyze the relationship between
the pregap pupil size and the M100 amplitude or the postgap alpha
power. Reward prospect, task difficulty, and their interaction were
included as regressors to account for their potential influence on the
M100 amplitude or postgap alpha power. A within-participant and a
between-participants regressor were included for the pupil size regressor,
as well as a random slope for the within-participant.

For the interpretation of effects analyzed with the different LMMs, we
calculated Bayes factors (BFs) as log(BF) = [BIC(H0)−BIC(H1)] / 2,
with BIC being the Bayes–Schwartz information criterion (Wagenmakers,
2007; Alavash and Obleser, 2024). To this end, we calculated the BIC for
the full model, including the regressor of interest (H1), and for the reduced
model, excluding the regressor of interest (H0). A log(BF) larger than 1 pro-
vides evidence for the presence of an effect of the regressor of interest,
whereas a log(BF) value smaller than –1 suggests the absence of an effect
of the regressor of interest (Dienes, 2014).

Data availability. All data and analysis scripts are available at https://
osf.io/prwb7/.

Results
Reward prospect improves performance
As intended, performance was better in the easy compared with
that in the hard condition for both accuracy and response time
[accuracy, GLMM; odds ratio (OR)= 0.05; standard error (SE) =
0.004; p=1.74 × 10−238; log(BF) = Inf; response time, LMM;
β=0.35; SE=0.007; p<1.74× 10−238; log(BF) = Inf; Fig. 2].
Furthermore, participants were more accurate and faster for the
reward-relevant compared with the reward-irrelevant condition
[accuracy, OR=1.31; SE= 0.117; p=3.54× 10−3; log(BF) =−0.15;
response time, β=−0.03; SE= 0.007; p=8.87× 10−5; log(BF) =
3.35]. The interaction was not significant [accuracy, OR=0.98;
SE= 0.175; p> 0.9; log(BF) =−4.6; response time, β=−0.02; SE=
0.014; p>0.2, log(BF) =−3.75]. We found a hazard-rate effect,
such that individuals were more accurate and faster when the
gap occurred later rather than earlier [accuracy, OR=1.21; SE=
0.036; p=3.19 × 10−10; log(BF) = 15.8; response time, β=−0.08;
SE= 0.003; p=2.44× 10−118; log(BF) = 263.5].

Participants rated their use of the auditory cue to distinguish
between reward-relevant and reward-irrelevant higher in the hard
compared with the easy condition (t(36) = 3.54; p= 1.11 × 10

−3;
d= 0.58).

Reward prospect modulates the task difficulty effect on the
pupil size
To investigate the influence of task difficulty and reward prospect
on the pupil size, we averaged the pupil size over the time window
ranging from 2.2 to 6.2 s (Fig. 3B; time-locked to the noise onset).
The pupil size was larger for hard compared with easy trials
[β= 0.05; SE = 0.009; p= 5.21 × 10−7; log(BF) = 9.1] and larger
for reward-relevant compared with reward-irrelevant trials
[β=0.03; SE=0.009; p=3.32 × 10−4; log(BF) = 2.6]. Importantly,
we observed a significant task difficulty × reward prospect
interaction, indicating a larger increase in the pupil size for
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reward-relevant than reward-irrelevant trials when task difficulty
was hard compared with easy [β=0.04; SE= 0.018; p=3.08× 10−2;
log(BF) =−1.9; Fig. 3C].

Next, we investigated whether a larger pupil size during the
interval preceding the gap is associated with behavioral perfor-
mance. This analysis was conducted using the hard trials only,
and the information about the reward conditions was included
as a regressor into the model. With this approach we controlled
for the effects of reward prospect and task difficulty on both the
pupil size and response time. To this end, pupil size data for hard
trials were aligned to gap-onset times, and the pupil size was
averaged across the −0.5–0 s pregap time window. The pregap
pupil size did not predict behavioral accuracy, neither at the
trial-by-trial state level [within-participant, OR= 1.07; SE =
0.043; p > 0.1; log(BF) =−2.7] nor at the trait level [between-
participants: OR= 1.04, SE = 0.158, p > 0.8, log(BF) =−1.6].
However, at the trial-by-trial state level, response times were
shorter when the pregap pupil size was larger [within-
participant, β=−0.02; SE = 0.008; p= 9.03 × 10−3; log(BF) = 0],
but at the trait level there was no association between a partici-
pant’s mean pupil size and mean response time [between-
participants, β=−0.01; SE = 0.038; p > 0.8; log(BF) =−1.6;
Fig. 3F]. To illustrate this effect, we grouped the hard trials into
fast- and slow-response trials, separately for the reward-relevant
and the reward-irrelevant condition (trials were selected such
that the mean gap time for fast- and slow-response trials did
not differ; see Materials and Methods). The pupil size was sign-
ificantly larger for fast trials compared with that for slow trials
already >1 s before the gap onset (Fig. 3E).

In addition, we conducted a temporal response function
(TRF) analysis (Crosse et al., 2016) to ensure that the observed
interaction of task difficulty and reward prospect is not resulting

from a temporal shift in the pupil size response due to response-
time differences between conditions (Fig. 2B). The time points of
the noise onset, gap onset, and response time of the respective
trial served as separate regressors to model the TRFs to the differ-
ent events. The TRF to the gap onset (Fig. 3G, left) but not to the
button response (Fig. 3G, right) shows temporal variability
between the different experimental conditions. However, impor-
tantly, we observed the interaction of task difficulty and reward
for both the TRF to gap onset (1.82 to 2.56 s) and to the button
response (1.38 to 2.22 s). Additionally, the pupil size TRF was
larger for hard compared with easy trials (TRF to the gap onset,
−2 to−0.88 s and1.36–3.14 s; TRF to button response, 0.96–2.54 s).

Task difficulty, but not reward prospect, affects the auditory
sensory response
We tested whether task difficulty and reward prospect influenced
sensory responses, that is, responses in the auditory cortex. To
this end, we focused on the M100 component in the 0.09–0.13 s
time window after the gap onset in temporal sensors. The M100
amplitude was larger for easy (i.e., longer gap duration) compared
with hard trials [i.e., shorter gap duration; β=−0.40; SE = 0.013;
p= 1.33 × 10−200; log(BF) = 210.5; Fig. 4A,B]. The effect for
reward prospect [β=−0.00; SE = 0.017; p > 0.9; log(BF) =−4.5]
and the interaction were not significant [β=−0.01; SE = 0.034;
p > 0.9; log(BF) =−4.5].

Task difficulty and reward prospect modulate the
response-related evoked field
We also explored the late ERF component from 0.5 s onward
(Fig. 4A). Because the topography indicates the responses origi-
nate from the parietal cortex, the analysis of this component
focused on parietal sensors. Sorting the gap-locked trials

Figure 2. Behavioral results. A, Accuracy. Proportion correct was better for the easy compared with the hard condition and for the reward-relevant compared with the reward-irrelevant
condition. Insets, 45° scatterplots showing the task difficulty (left) and the reward-prospect effect (right) from linear mixed-model analysis. Difference plots (y- minus x-axis) are shown in the
top-right corners). B, Response time. Participants were faster for the easy compared with the hard condition and for the reward-relevant compared with the reward-irrelevant condition. Insets,
45° scatterplots showing the task difficulty (left) and the reward-prospect effect (right) from linear mixed-model analysis. Difference plots (y- minus x-axis) are shown in the top-right corners.
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according to their response times (Fig. 4C) shows that this com-
ponent is time-locked to the response rather than to the gap onset
(at 0 s in Fig. 4C), because the negative deflection succeeds the
response time (dashed line). Hence, we analyzed this component
time-locked to the button response (Fig. 4D) instead of time-
locked to the gap onset. Topographies for the time windows before,
during, and after the button response are shown in Figure 4, D and

E, indicating that the response-related component is similar to the
component we observed in the gap-locked analysis (Fig. 4C). The
response-related component was stronger deflected for hard than
easy trials [β=−0.18; SE=0.013; p=1.54 × 10−39; log(BF) = 83]
and for reward-relevant than reward-irrelevant trials [β=−0.04;
SE= 0.013; p=1.33 × 10−3; log(BF) = 1; Fig. 4E]. The interaction
was not significant [β=−0.05; SE=0.026; p>0.05; log(BF) =−2.5].

Figure 3. Pupil size results. A, Averaged pupil size time courses across participants per condition. Error bands reflect the within-participant error. Gray areas indicate time window during which
a gap could occur, from 2.2 to 4.2 s. B, Averaged data for 2.2–6.2 s time window. Error bars indicate the standard error of the mean. C, 45° scatterplots illustrate the interaction. Left, Data from
the easy condition. Right, Data from the hard condition. Colored dots show averaged pupil data per task difficulty level, separately for each participant. The 45° line indicates no difference
between conditions. Crosshairs indicate the 95% confidence interval. Difference plots (y- minus x-axis) are shown in top-right corners. D, Pupil size time courses (time-locked to the gap onset) for
the hard condition, separately for each reward-prospect condition (light vs dark) and for hit and miss trials (solid vs dashed lines). Error bands reflect the within-participant error. E, Pupil size data
grouped into trials with slow- (dashed) and fast-response times (solid). The histogram shows the distribution of response times for each group. Gray area indicates the time window for the LMM
analysis in panel F. Black line indicates the time window in which the pupil size was significantly larger for fast-response trials compared with slow-response trials (after FDR correction). Error
bands reflect the within-participant error. F, Effect of the pupil size on response time in an LMM analysis. A larger pupil size is associated with a faster response time on a within-participant level
(not for the between-participants effect). Participant-specific slope for the pupil size did not improve the model, but we show it here for illustrative purposes. G, TRF approach of the pupil size
response to the gap onset (left) and button press (right). Black line indicates the time window in which the pupil size increased stronger for reward-relevant than reward-irrelevant trials when
task difficulty was hard compared with easy. Dashed black line indicates the time window in which the pupil size was significantly larger in hard compared with easy trials. All shown significant
effects are based on FDR correction.
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Neither reward prospect nor task difficulty modulate pregap
parietal alpha power
The time–frequency analysis shows that parietal alpha power in
the 8–12 Hz frequency band increased over time after the noise
onset, up to when the gap occurred (Fig. 5C). However, alpha
power in the 1.7 to 2.2 s time window after the noise onset
(i.e., 0.5 s before any gap could occur) showed no effect of task
difficulty [β= 0.00; SE = 0.016; p > 0.9; log(BF) =−4.5], reward
prospect [β=−0.01; SE = 0.016; p > 0.9; log(BF) =−4.5], nor the
interaction [β=−0.02; SE = 0.032; p > 0.9; log(BF) =−4.5].
Grouping trials according to hits and misses (irrespective of

condition) showed the pregap alpha power increase for hits but
not for miss trials. For hit trials, alpha power also decreased after
the gap onset (Fig. 5D).

Alpha-power time courses were time-locked to the gap onset
for an analysis of the exact time window before the gap onset. We
investigated whether alpha power in the pregap time window
(−0.5 to 0 s) was affected by our experimental manipulations.
However, neither the effect of reward prospect [β=−0.01;
SE = 0.016; p > 0.5; log(BF) =−4.5], task difficulty [β=−0.02;
SE = 0.016; p > 0.5; log(BF) =−4], nor the interaction were
significant [β=−0.03; SE = 0.032; p > 0.5; log(BF) =−4.5].

Figure 4. Event-related field to the gap onset and to the button response. A, Event-related field to the gap onset. Data are averaged across temporal sensors marked in the inset. Error bands
reflect the within-participant error. Gray areas indicate time windows for analysis in B and C. B, Effect on M100. Average from 0.09 to 0.13 s. Top, Topography for the average across all for
conditions. Bottom, Statistical results are calculated using an LMM. Main effect is significant for difficulty but not for reward prospect. C, Late ERF component. Top, Topography for the average
across all four conditions from 0.5 to 1 s. Bottom, Trials sorted by response time and time-locked to the gap onset. Average across parietal sensors that are marked in the inset in panel D. Data are
from all conditions. Black dashed line indicates response time. D, Event-related field to button response. Data are averaged across parietal sensors marked in the inset. Error bands reflect the
within-participant error. Gray areas indicate time windows for topographies on the right and in panel E. Topographies for time window before button response and around button response show
main activity around left motor areas. E, After-response component. Top, Topography for the average across all four conditions from 0.1 to 0.6 s. Bottom, Statistical analysis of time window 0.1–
0.6 s after button response using an LMM. Stronger deflection for hard compared with easy trials and for reward-relevant compared with reward-irrelevant trials. All significant effects are based
on FDR correction.

8 • J. Neurosci., October 30, 2024 • 44(44):e0589242024 Kraus et al. • Motivational State in Auditory Processing



Although pregap alpha power was not modulated by task
difficulty or reward prospect, we found a positive correlation
between pregap alpha power and behavior. The probability of
detecting a gap (for hard trials) was higher when pregap alpha
power in parietal sensors was larger (Fig. 5E). This effect was pre-
sent on the within-participant level [OR= 1.12; SE = 0.037; p=
7.81 × 10−4; log(BF) = 1.7], but not on the between-participants
level [OR= 0.90; SE = 0.143; p > 0.5; log(BF) =−1.6]. There were
no significant alpha-power effects on response time [within-
participant, β= 0.03; SE = 0.029; p > 0.2; log(BF) =−3.5; between-
participants, β= 0.19; SE = 0.142; p > 0.2; log(BF) =−1.1].

Reward prospect modulates postgap alpha-power suppression
We further explored the alpha-power suppression that followed the
gap. Figure 6A suggests the alpha suppression is related to the gap
rather than the button press, as illustrated by relation of the two
dashed lines to the alpha-power suppression in Figure 6A. Task
difficulty led to a postgap alpha-power suppression that was only

marginally significant for temporal sensors [β=−0.04; SE=0.018;
p=4.03 × 10−2; log(BF) =−2; Fig. 6C] and not significant for pari-
etal sensors (β=−0.03, SE= 0.018, p>0.2, log(BF) =−3.5, Fig. 6D).
However, alpha power was more suppressed in reward-relevant
compared with reward-irrelevant trials for temporal sensors [β=
−0.07; SE=0.017; p=3.33× 10−4; log(BF) = 3] and parietal sensors
[β=−0.05; SE= 0.018; p=1.53 × 10−2; log(BF) =−0.5]. For neither
of the two sensor clusters the interaction was significant [temporal
sensors, β=−0.06; SE=0.035; p>0.1; log(BF) =−3; parietal sen-
sors, β=−0.03; SE=0.036; p>0.4; log(BF) =−4]. Projecting
gap-locked alpha–power data into source space revealed qualita-
tively similar results to the results in sensor space, although not
all effects reached statistical significance in source space (Fig. 7).

Correlating the M100 amplitude with the postgap alpha-
power suppression revealed a positive relationship. When the
M100 amplitude across temporal sensors was enhanced, subse-
quent alpha power was less suppressed in both temporal [within-
participant, β= 0.11; SE = 0.020; p= 2.74 × 10−8; log(BF) = 108;

Figure 5. Pregap alpha-power analysis. All data are averaged across parietal sensors marked in the inset in panel C. A, Time–frequency power measured in decibel relative to a prestimulus
time interval and averaged across all conditions. B, Topography reflects alpha power in the 500 ms (1.7–2.2 s) before the time window when a gap could occur (averaged across all conditions;
gray area in C). C, Alpha power averaged for all four conditions separately. Error bands reflect the within-participant error. Effects of task difficulty and reward prospect were not significant in the
500 ms before a gap could occur (gray area). D, Alpha power for hit trials (top) and miss trials (bottom) sorted by the gap onset. Black dashed lines indicate the gap time. Alpha power increased
toward the gap but was suppressed after gap occurrence (for hit trials). E, Effect of pregap parietal alpha power on accuracy in an LMM analysis. Larger pregap alpha power is associated with
better performance on a within-participant level only. Reported effects are based on FDR correction.
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between-participants, β= 0.37; SE = 0.049; p= 6.26 × 10−13;
log(BF) = 12.8] and parietal sensors [within-participant, β=0.09;
SE = 0.016; p= 2.74 × 10−8; log(BF) = 47; between-participants,
β= 0.20; SE = 0.076; p= 1.36 × 10−2; log(BF) = 1.2].

Larger pregap pupil size covaries with lower pregap parietal
alpha power
To investigate the relationship between pupil size and brain mea-
sures, we calculated different LMMs (Fig. 8). First, we tested
whether the pregap pupil size is associated with auditory cortex
responses to the gap (M100 amplitude; averaged across temporal
sensors). There was no within-participant effect [β=−0.01; SE =
0.018; p > 0.6; log(BF) =−6] nor a between-participants effect
[β=−0.07; SE = 0.053; p > 0.4; log(BF) =−1.73].

Second, we investigated whether the pregap pupil size is asso-
ciated with pregap parietal alpha power (averaged across parietal
sensors). A larger pupil size was associated with lower parietal
alpha power on a within-participant level [β=−0.05; SE = 0.02;
p= 1.25 × 10−2; log(BF) = 5.5; Fig. 8B]. There was no significant
effect on a between-participant level [β =−0.06; SE = 0.104;
p > 0.6; log(BF) =−1.64]. Importantly, controlling for possible
changes of alpha power over time via including the trial num-
ber across the experiment as an additional regressor into the
model had no effect on the results.

Discussion
In the current study, we investigated a listener’s motivation
affecting behavior, pupil size, and neural activity during a chal-
lenging auditory detection task. Participants performed better,
and the pupil size increased when listeners were more motivated
compared with when they were less motivated by reward

prospects. Neural oscillatory activity in parietal regions increased
throughout the presentation of the noise sound, but this power
increase was independent of task difficulty and reward prospect.
Auditory sensory responses to auditory target stimuli were not
modulated by reward prospect. However, both task difficulty
and reward prospect independently enhanced postgap activity.
In sum, pupil size changes index cognitive investment during
the interplay of listening demand and motivation, whereas moti-
vation impacts neural indices poststimulus rather than prepara-
tory attentional modulation. The current study thus shows the
complex and distinct impacts of motivation and listening
demands on different neurophysiological systems.

Motivational state moderates the effect of listening demand on
the pupil size
The pupil size increased as listening demands increased, as
expected (Kahneman and Beatty, 1966; Zekveld et al., 2010;
Koelewijn et al., 2012; Winn et al., 2015; Wendt et al., 2016;
Ohlenforst et al., 2018; Kadem et al., 2020; Kraus et al., 2023b).
Previous work has also shown that the pupil size is sensitive to
individuals giving up listening under impossible listening condi-
tions (Zekveld and Kramer, 2014; Ohlenforst et al., 2017;
Herrmann and Ryan, 2024). The observation of the current study
that a low motivational state is associated with a smaller pupil
size, especially under high listening demands (Fig. 3B), is consis-
tent with the literature on “giving up” listening. People may
invest less cognitively when they are little motivated (Brehm
and Self, 1989; Pichora-Fuller et al., 2016; Koelewijn et al.,
2018; Herrmann and Johnsrude, 2020; Kraus et al., 2023a).
A consideration in the current study may be that response times
differed between conditions and that response time temporally

Figure 6. Postgap alpha-power analysis. A, Gap-locked alpha–power trials sorted by response time. Data are averaged across parietal sensors; see inset in D. Black lines represent the gap
onset and the response time. Alpha-power suppression is rather time-locked to the gap onset than to the response time. B, Left, Grand average topography for−0.5–0 s time-locked to the gap
onset. Right, Grand average topography for maximal alpha-power suppression after the gap onset. C, Temporal sensors. Left, Alpha power averaged per condition across participants and
temporal sensors (see inset). Error bands reflect the within-participant error. Right, LMM results of alpha-power suppression. Alpha-power suppression was larger for hard compared with
easy and for reward-relevant compared with reward-irrelevant trials. D, Parietal sensors. Left, Alpha power averaged per condition across participants and parietal sensors (see inset).
Error bands reflect the within-participant error. Right, LMM results of alpha-power suppression. Alpha-power suppression was larger for reward-relevant compared with reward-irrelevant trials.
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aligned with the pupil dilation. However, the moderating effect of
the motivational state on the task difficulty effect on the pupil size
remains qualitatively the same when controlling for the potential
confound of the different response times (Fig. 3G).

Critically, the behavioral results by themselves suggest that
the influence of motivation is independent of the influence of lis-
tening demand (two main effects; Fig. 2). However, the pupil size
results indicate, consistently with cognitive control frameworks
(Brehm and Self, 1989; Parro et al., 2018; Yee and Braver,
2018), that motivation is most impactful under difficult com-
pared with easy listening demands. Consequently, based on
motivational intensity theory (Brehm and Self, 1989; Richter,
2016), the individual motivational state is another important
determinant of the amount of effort allocated during listening
besides the level of listening demand. The here and previously
found increases in pupil size and response speed with heightened
motivation (Kraus et al., 2023a) highlight the importance of tak-
ing listeners’ motivation into account when assessing their
invested effort. Our pupil size data thus provide an important
confirmation to examine motivational impacts on the neural
level.

Expectations about different levels of listening demand are not
sufficient to modulate alpha power
Parietal alpha power increased throughout the presentation of
the noise up to when individuals detected the gap (Fig. 5C).
Alpha power thus showed sensitivity to when in time attention
is allocated, followed by a poststimulus suppression (Herrmann

et al., 2023). However, in contrast to previous work (Obleser
et al., 2012; Petersen et al., 2015; Wöstmann et al., 2015;
Wisniewski et al., 2017) and our hypothesis, we did not observe
an increase in parietal alpha power with increasing task demand
nor when listeners could expect a reward for performing well.
One important difference between our and these former studies
is that different tasks and time windows of interest were
employed. Most of the studies that report demand-related effects
on parietal alpha power during listening observed them in a
memory task, during the retention period when participants
held a stimulus in memory to compare it with a later probe sti-
mulus (Obleser et al., 2012; Petersen et al., 2015; Wöstmann
et al., 2015; Wisniewski et al., 2017). In the present study, we
investigated alpha-power changes in a period—leading up to a
behaviorally relevant auditory event—during which our experi-
mental conditions were acoustically identical (as opposed to
some of the previous studies). It thus appears that top–down
knowledge about the difficulty of an upcoming event is insuffi-
cient to drive changes in parietal alpha power (but also see
Herrmann et al. (2023), indicating additional complexities).
Palva and Palva (2011) suggest that distinguishing between
endogenous and exogenous task demands is critical to under-
standing alpha-power dynamics. Manipulation of task demand
via the saliency of a stimulus is an exogenous manipulation
(Obleser et al., 2012; Petersen et al., 2015; Wöstmann et al.,
2015; Wisniewski et al., 2017), whereas adjusting expectations
about the demand level is an endogenous manipulation (present
study). Therefore, we suggest that changes in alpha power due to

Figure 7. Source localized alpha power, time-locked to the gap onset. A, Left, Grand average source plot for −0.5–0 s time-locked to the gap onset. Right, Grand average source plot
for maximal alpha-power suppression after the gap onset. B, Auditory ROI. Left, Source-projected alpha power for each condition. Inset shows the auditory ROI. Error bands reflect the
within-participant error. Right, Results from an LMM predicting alpha-power suppression. Alpha-power suppression was larger for hard compared with easy trials [β=−0.07; SE = 0.018;
p= 9.64 × 10−4; log(BF) = 2.5]. The effect of reward [β=−0.02; SE = 0.018; p> 0.6; log(BF) =−4] and the difficulty × reward interaction [β= 0.02; SE = 0.036; p> 0.7; log(BF) =−4.5]
were not significant. Direction of the effects is the same as in sensor space. C, Same as in panel B for a parietal ROI. No significant effect was found [task difficulty, β=−0.03; SE = 0.016;
p> 0.7; log(BF) =−2.5; reward prospect, β=−0.02; SE = 0.016; p> 0.1; log(BF) =−3.5; interaction, β=−0.06; SE = 0.031; p> 0.1; log(BF) =−3]. Direction of the effects is the same as in
sensor space.
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listening demand may only be observed under specific task and
stimulus conditions but do not generally vary with different levels
of cognitive resource recruitment during listening.

Not auditory sensory processing but poststimulus alpha power
is modulated by motivational state
Auditory sensory responses (M100 amplitude) were enhanced
for a long compared with a short gap duration—and thus for
the more salient target—but not for variations in motivation.
The M100 and the N100, the electric equivalent, are known to
respond most strongly to changes in physical stimulus properties
(Hansen and Hillyard, 1980; Näätänen and Picton, 1987; Paiva
et al., 2016; Frank et al., 2020). Nevertheless, attentional modula-
tions of the M100/N100 have been observed previously but often
limited to spatial tasks (Hillyard et al., 1973; Woldorff and
Hillyard, 1991; Ding and Simon, 2012; O’Sullivan et al., 2015;
Kraus et al., 2021; Orf et al., 2023). It appears, however, that
the attentional boost through motivation is insufficient to affect
auditory sensory responses.

In contrast to the auditory sensory processing, we observed a
response-related neural signal that scaled with task difficulty and
reward prospect. Research on the impact of reward on stimulus
processing often focuses on the feedback-related negativity
(FRN). The FRN is a component that peaks ∼200 ms after the
feedback about an earned or lost reward (Holroyd and Coles,
2002; Glazer et al., 2018). The FRN is thought to scale with the
degree to which the actual feedback deviates from the expected
feedback (Sambrook and Goslin, 2015; Frömer et al., 2021) and
is modulated by reward expectation (M. X. Cohen et al., 2007).
In the present study, participants knew whether they were in a
reward-irrelevant or a reward-relevant trial and how difficult tar-
get detection was. Moreover, the response participants made
upon gap detection was the only feedback that they received
about possibly gaining a reward. Detecting a gap in hard trials
may have led to a more unexpected feedback signal (i.e., positive
surprise) than in easy trials because participants knew that it
would be less likely for them to detect the gap in hard trials.

This feedback signal may be greater in the reward-relevant
than the reward-irrelevant condition. We, therefore, interpret
the observed effect of motivation as a positive surprise related
to the detection of the gap.

Although there was no change in pregap alpha power nor in
auditory sensory processing (M100) due to changes in the moti-
vational state, the postgap alpha-power suppression was stronger
during high compared with low motivation, independently of
task demand. The suppression of alpha power is thought to be
a sign of the facilitation, and therefore gating, of the processing
of sensory input (Pfurtscheller, 2003; Klimesch et al., 2007;
Jensen and Mazaheri, 2010; Palva and Palva, 2011). In visual
attention tasks, reward prospect enhanced post-target encoding
(Hall-McMaster et al., 2019) and neural processing in attention
networks (Small et al., 2005), suggesting motivation influences
of attentional top–down mechanisms on sensory processing.
Both the response-related neural signal and the poststimulus
alpha-power suppression suggest motivation affects top–down
mechanisms during effortful listening.

Discrepancy between changes in the pupil size and alpha
power
Both parietal alpha power and pupil size increased over the trial
time course toward the gap, which proved beneficial for behavior.
However, the degree to which bothmeasures were affected by our
experimental manipulations differed. The pupil size was greater
for higher task demands and modulated by motivation, whereas
parietal alpha power prior to the gap did not change for either
manipulation.

Research investigating the relations between both metrics is
rare. The few studies that observed simultaneous demand-driven
dynamics in the pupil size and alpha power manipulated the
demand via the stimulus itself, for example, by adding different
levels of background noise to speech or using noise-vocoded
speech at different levels (McMahon et al., 2016; Miles et al.,
2017; Ala et al., 2020). As outlined above, the present study
had no acoustic differences in the pregap analysis window, which

Figure 8. Relation between the pupil size and brain measures. A, Relation between the pregap pupil size and M100 amplitude. LMM controlled for experimental conditions and was done on
hit trials only. The pupil size was averaged across 0.5 s before the gap onset and baseline-corrected to the baseline window before the trial. M100 data were averaged across temporal sensors.
No within-participant nor between-participant effect of the pupil size on the M100 amplitude was found. B, Relation between the pregap pupil size and pregap parietal alpha power. LMM
controlled for experimental conditions and was done on hit trials only. The pupil size was averaged across 0.5 s before the gap onset and baseline-corrected to the baseline window before the
trial. Alpha-power data were averaged across the same 0.5 s time window and across parietal sensors. A significant negative relationship between the pupil size and alpha power was found on a
within-participant level.
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may explain the absence of alpha-power changes. In a recent
study using the same auditory paradigm in an audiovisual dual-
task, we also found that changes driven by listening demands
were more prominent in the pupil size than in parietal alpha
power (Kraus et al., 2023b).

The current study also showed that the pregap pupil size and
pregap parietal alpha power are negatively related (Kraus et al.,
2023b). Although the pupil size and alpha power were differently
sensitive to listening demand and motivation, a common under-
lying mechanism seems to affect both the pupil size and parietal
alpha power but in opposite directions. NE dynamics originating
from the LC may be one candidate. Pupil size variations are cor-
related with activity in the LC (Aston-Jones and Cohen, 2005b),
and the pupil dilates in response to LC stimulation (Liu et al.,
2017). Increased NE activity emerging from LC is linked to opti-
mizing task performance and task engagement (Aston-Jones and
Cohen, 2005a). The NE influence on thalamic modulations
(McCormick, 1998) and the thalamic connection to cortical
oscillatory activity (Steriade, 2000) provide evidence for a neural
mechanism affecting both the pupil size and neural oscillatory
alpha power (Dahl et al., 2022).

Conclusion
The present study confirms that the pupil size robustly indexes
cognitive investment during listening and provides an integrated
readout of an individual’s motivational state. However, the neu-
ral mechanisms that encode listening demand and motivational
state reveal a more nuanced picture: expectation of a more
demanding or more important (i.e., reward-relevant) sensory
input does not suffice to elicit variations in neural alpha power.
Auditory sensory processing was also not affected by a listener’s
motivational state. Importantly, we observed that the known
alpha-power suppression in the wake of an auditory target event
appears amplified under top–down motivational regulation. In
sum, while the pupil size poses an integrated readout of listening
demand and motivation, both dimensions selectively affect
sensory and attentional postprocessing aspects of auditory
neurophysiology.
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