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Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual
decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening
behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported
by modular reconfiguration of auditory–control networks in a sample of N= 40 participants (13 males) who underwent resting-state
and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained
an average accuracy of ∼70% but yielded considerable interindividual differences in listeners’ response speed and reported
confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory,
cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular
network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network
and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response
confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance
of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one’s own perception
in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable
metacognitive differences between individuals in adaptive listening behavior.
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Significance Statement

The ability to communicate in challenging listening situations varies not only objectively between individuals but also in terms of
their subjective perceptual confidence. Using fMRI and a challenging auditory task, we demonstrate that this variability in the
metacognitive aspect of listening behavior is reflected on a cortical level through the modular reconfiguration of brain networks.
Importantly, task-related modulation of interconnectivity between the cinguloopercular network and each auditory and dorsal
attention network can explain for individuals’ differences in response confidence. This suggests two dissociable cortical
networked systems that shape the individual evaluation of one’s own perception during listening, promising new opportunities
to better understand and intervene in deficits of auditory perception such as age-related hearing loss or auditory hallucinations.

Introduction
In complex auditory scenes, attending only to what we want to
hear can be a challenging task, making our listening prone to
errors and uncertainties. Listening as such not only hinges on
auditory fidelity but also requires brain networks associated
with directing, switching, and maintaining auditory attention
(B. G. Shinn-Cunningham, 2008; Hill and Miller, 2010).

In recent years, there has been growing interest in studying
listening as a trait-like behavior, as individuals differ substantially
in utilizing cognitive strategies to control their auditory
attention (B. Shinn-Cunningham, 2017; Peelle, 2018; Waschke
et al., 2017; Tune et al., 2021). Nevertheless, the neural
underpinnings of this interindividual variability are poorly
understood.
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Previous functional magnetic resonance imaging (fMRI)
studies have associated auditory attention with regions overlap-
ping with temporal and dorsal-parietal cortices (Puschmann
et al., 2017; Shiell et al., 2018) and cinguloopercular/insular cor-
tices in challenging listening tasks (Eckert et al., 2009; Wild et al.,
2012; Erb et al., 2013; Vaden et al., 2019). Additionally, as
reviewed previously, when listeners selectively focus their audi-
tory attention to a particular location, cortical areas overlapping
with well-known visuospatial attention networks are more active
compared with when not listening (Lee et al., 2014).

In parallel, functional connectivity studies have identified
large-scale brain networks involved in cognitively demanding
tasks, which include a cinguloopercular/insular network
(Dosenbach et al., 2008; Menon and Uddin, 2010; Sadaghiani
and D’Esposito, 2015), a frontoparietal network (Seeley et al.,
2007; Marek and Dosenbach, 2018), and a dorsal attention net-
work (Fox et al., 2006; Szczepanski et al., 2013). Surprisingly,
whether and how these attentional-control networks support
adaptive listening behavior has remained somewhat understud-
ied and incompletely understood.

The emerging field of network neuroscience provides the the-
oretical basis to address this question (Bassett and Sporns, 2017).
Along these lines of research, our previous fMRI study provided a
large-scale brain network account of adaptive listening behavior
(Alavash et al., 2019). Specifically, we were able to explain indi-
vidual adaptation to a challenging listening task with concurrent
speech by reconfiguration of a network of auditory, cingulooper-
cular, and ventral attention nodes toward increased modular seg-
regation during the task relative to resting-state baseline.

However, an often understudied and thus not explained
aspect of human adaptive perception and communication lies
in the subjective assessment of one’s own perceptual judgments.
Many neuroimaging studies of auditory cognition, including our
own, have measured behavior only objectively using individuals’
response accuracy (also labeled as “type I” perceptual decisions;
Galvin et al., 2003) and, sometimes, speed. Challenging listening
situations naturally introduce uncertainties to individual’s evalu-
ation of their own auditory perception, thus confidence in listen-
ing (secondary to listening accuracy). This subjective evaluation
can be viewed as a second-order measure of listening behavior,
also referred to as “type II” decision (see above ref.). Such subjec-
tive reports can vary markedly from objective measures of listen-
ing behavior (Wöstmann et al., 2021).

Thus, one important question is whether and how brain net-
work dynamics regulate listener’s metacognitive assessment of
their own perception to support adaptive listening. Knowing
the role of cinguloopercular and insular networks in listening
under challenging situations, performance monitoring, and
interoception (Fleming and Dolan, 2012; Barttfeld et al., 2013;
Uddin, 2015; Rouault et al., 2018), it is plausible to associate these
interoceptive networks with subjective evaluation of one’s own
perception during listening, that is, with a variant of “meta-
listening.” Specifically, we do not knowwhether and how listeners’
capacity for introspection to reflect on their own perception relies
on the interactions between distributed cortical networks.

To address this issue, we aimed to identify and characterize
auditory-attentional-control networks and their reconfiguration
in a challenging auditory task that allowed joint measurement
of objective and subjective listening behavior. Thus, leveraging
the degree and direction of network dynamics, the present study
asks two questions: (1) how are large-scale cortical networks
being reconfigured to support selective listening? and (2) how
can such reconfigurations explain individual differences not

only in objective-perceptual but also in subjective-metacognitive
measures of listening behavior?

Materials and Methods
Participants
Forty-five participants were invited to take part in the study. All partic-
ipants were right-handed (assessed by a translated version of the
Edinburgh Handedness Inventory; Oldfield, 1971) and had normal or
corrected-to-normal vision, and all had normal hearing [assessed using
pure tone audiometry (PTA); left–right average PTA across frequencies
0.025–8 kHz < 25 dbHL]. None of the participants had any history of
neurological or psychiatric disorders. Five participants were excluded
as their data did not fulfill the criteria used to assess the quality of
fMRI images (see below, FMRI data acquisition and preprocessing).
Accordingly, 40 participants were included in the main analysis (age
range, 18–32 years; median age, 23; 13 males). All procedures were in
accordance with the Declaration of Helsinki and approved by the local
ethics committee of the University of Lübeck. All participants gave writ-
ten informed consent and were financially compensated (10€/h).

Procedure
Each imaging session consisted of seven fMRI runs (Fig. 1A): eyes-open
resting state (∼10 min) followed by six runs in which participants per-
formed an adaptive selective pitch discrimination task (∼10 min each).
During each resting state and each run of the listening task, 610 and
550 functional volumes were acquired, respectively. A structural scan
(∼5 min) was acquired at the end of the imaging session. Before func-
tional and structural imaging, outside the MRI room, each participant
completed a screening procedure used to assess handedness, a shortened
version of the Spatial, Speech andHearing Quality Scale (SSQ; Gatehouse
and Noble, 2004), as well as complete pure tone and speech-in-noise
audiometry in free field in a sound-attenuated cabin.

Experimental design
Task design and stimuli were adapted from Dai et al. (2018) and were
identical to our previous EEG study (Wöstmann et al., 2019a). The
experiment was implemented in the Psychtoolbox for Matlab
(Brainard, 1997) and conducted inside the MRI scanner with the partic-
ipant lying in the supine position (Fig. 1A).

Auditory stimuli. All auditory stimuli were presented at a sampling
frequency of 44.1 kHz at a comfortable level of ∼65 dBA. On each trial,
an auditory spatial cue (10.9 kHz low-pass filtered Gaussian noise; 0.5 s)
was presented at one location followed by two concurrent tone sequences
presented at two different spatial locations (front, left, or right). Each
tone sequence consisted of two 0.5 s complex tones (fixed ISI of
50 ms), one low-pitch tone and one high-pitch tone. All tones and the
spatial cue were gated on and off with 100 ms cosine ramps. The pitch
of the low-pitch tone was fixed at 177 Hz (including 32 harmonics) for
one sequence and at 267 Hz (including two harmonics) for the other
sequence. Throughout the experiment, the pitch difference was individ-
ually titrated by varying the fundamental frequency of the high-pitch
tone in each sequence in semitones relative to the low-pitch tone using
an adaptive tracking procedure (two up, one down) to retain the listener’s
overall accuracy at∼70% (Levitt, 1971; see Fleming et al., 2010, and Palmer
et al., 2014, for a similar titration approach in a visual perceptual task).
Thus, after one incorrect response or two subsequent correct responses,
the pitch difference within each tone sequence was increased or decreased
in steps of 0.05 semitones on the next trial, respectively. This procedure
ensured that the task was equally challenging enough, as reflected in a
fair number of trials with correct and incorrect responses for each listener,
and in turn yielded considerable interindividual variability in response
speed and confidence across listeners (Fig. 1B).

The initial pitch difference for the tracking procedure was obtained
from a pre-experiment training session. The cue location (front vs
side), the pitch direction within each sequence (increasing vs decreasing),
and the assignment of tone sequences to the locations were balanced
across trials and drawn randomly for an individual trial. Tone sequences
were presented using in-ear headphones based on individually selected
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head-related transfer functions. The location of a sound stream could be
either front or side (i.e., 0 or 90° azimuth relative to ear–nose–ear line).
The location of the lateral stream changed between left and right across
blocks of the experiment. The other stream was always presented at the
front throughout. There were three blocks of the experiment with the lat-
eral stream on the left side and three blocks with the lateral stream on the
right. The order of blocks was counterbalanced across participants and
alternated between blocks with the lateral stream on the left versus right.
Within each block, a participant completed 96 trials (each spatial loca-
tion served as the target in 48 trials).

Virtual spatialization of sounds. To present the auditory stimuli used
in the task (i.e., the spatial cue and complex tones) in three different spatial
locations (i.e., left, right, front), the stimuli were convolved in Matlab dur-
ing the presentation in the Psychtoolbox environment with individually
selected head-related transfer functions (HRTFs) from the publicly avail-
able HRTF database CIPIC (https://github.com/amini-allight/cipic-hrtf-
database). A similar procedure has been used in previous studies (Shiell
et al., 2018). The procedure to select individual HRTF was conducted
before training, outside the MRI scanner room, and using the same in-ear
headphones as themain experiment. This procedure was completed in two
steps. First, in a preselection step, individual anthropometric data were
measured and used to find the HRTF which would match the best to
each individual based on the Euclidean distance as the similarity measure.
Next, these best matches were sorted and used to present the spatial cue at
the front without elevation three times. Finally, the participant was asked
whether the stimulus gave the impression that the cue was presented at the
front, in the middle, and outside the head. If not, the second step was
repeated using the next impulse response in order, until the participant
confirmed the virtual specialization of the cue at the front.

Selective pitch discrimination task. At the start of each trial, after a jit-
tered period of ∼1 s (0.8–1.2 s), an auditory spatial cue was presented on
one location to inform the participant about the target location (Fig. 1A).
After a jittered period of∼1.5 s (right-skewed distribution; median: 1.44 s;
truncated at 0.5 and 3.5 s) relative to cue offset, two tone sequences were
presented concurrently. Participants reported whether the tone sequence
at the target location increased or decreased in pitch and how confident
they were in this response using a response box with four buttons. No
visual stimulation was done during the experiment, and the participants
were instructed to fixate on a cross in the middle of a screen with a gray
background projected from the back of the magnet bore onto a mirror
mounted on the head coil and positioned in front of the participant’s
view. Before the main experiment, a short training ensured that partici-
pants could perform the pitch discrimination task.

FMRI data acquisition and preprocessing
MRI image acquisition parameters. Functional MRI data were

collected using a Siemens MAGNETOM Skyra 3 T scanner equipped
with a 64-channel head/neck coil and an echoplanar imaging (EPI)
sequence [repetition time (TR), 1,000 ms; echo time (TE), 25 ms; flip angle
(FA), 60°; acquisition matrix, 64× 64; field of view (FOV), 192 mm×
192 mm; voxel size, 3 × 3× 3 mm; slice spacing, 3 mm]. Each image
volume consisted of 36 oblique axial slices parallel to the anterior commis-
sure–posterior commissure (AC–PC) line and was acquired with an accel-
eration factor of 2. Structural images were obtained using a magnetization
prepared rapid gradient echo (MP-RAGE) sequence [TR, 1,900 ms; TE,
2.44 ms; FA, 9°; 1 mm isotropic voxel; 192 sagittal slices].

MRI image preprocessing. An overview of the preprocessing steps for
analyzing the fMRI data is presented in Figure 2. Volumetric images
acquired from each participant were converted from DICOM format to
standard BIDS format (K. J. Gorgolewski et al., 2016) using HeuDiConv
(Halchenko et al., 2018). The resulting data were then preprocessed using
fMRIPrep (Esteban et al., 2019) with minimal preprocessing applied
according to the standard fMRIPrep procedure. Results included in this
manuscript come from preprocessing performed using fMRIPrep 20.2.6
(Esteban et al., 2018, 2019), which is based on Nipype 1.7.0 (K.
Gorgolewski et al., 2011; K. J. Gorgolewski et al., 2018).

Anatomical data preprocessing. The T1-weighted (T1w) image was
corrected for intensity nonuniformity (INU) with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008),
and used as T1w-reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as
target template. Brain tissue segmentation of the cerebrospinal fluid
(CSF), white matter (WM), and gray matter (GM) was performed on the
brain-extracted T1w using fast (FSL 5.0.9; Y. Zhang et al., 2001). Brain
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1; Dale et al.,
1999), and the brain mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and FreeSurfer-derived
segmentations of the cortical gray matter of Mindboggle (Klein et al., 2017).
Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through nonlinear registration
with antsRegistration (ANTs 2.3.3), using brain-extracted versions of
both T1w reference and the T1w template. The following template was
selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical
template version 2009c (Fonov et al., 2009, TemplateFlow ID:
MNI152NLin2009cAsym).

Functional data preprocessing. First, a reference volume and its skull-
stripped version were generated using a custom methodology of
fMRIPrep. Susceptibility distortion correction (SDC) was omitted. The
BOLD reference was then coregistered to the T1w reference using bbreg-
ister (FreeSurfer) which implements boundary-based registration (Greve
and Fischl, 2009). Coregistration was configured with six degrees of free-
dom. Head-motion parameters with respect to the BOLD reference
(transformationmatrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 5.0.9; Jenkinson et al., 2002). BOLD runs were slice time cor-
rected to 0.462 s (0.5 of slice acquisition range, 0–0.925 s) using 3dTshift
from AFNI 20160207 (Cox and Hyde, 1997; RRID:SCR_005927). The
BOLD time series (including slice-timing correction when applied)
were resampled onto their original, native space by applying the trans-
forms to correct for head motion. These resampled BOLD time series
will be referred to as preprocessed BOLD in original space, or just pre-
processed BOLD. Several confounding time series were calculated based
on the preprocessed BOLD: framewise displacement (FD), DVARS, and
three region-wise global signals. FD was computed using two formula-
tions following Power (absolute sum of relative motions; J. Power et
al., 2014) and Jenkinson (relative root mean square displacement
between affines; Jenkinson et al., 2002). FD and DVARS are calculated
for each functional run, both using their implementations inNipype (fol-
lowing the definitions by J. Power et al., 2014). The three global signals
are extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow
for component-based noise correction (CompCor; Behzadi et al., 2007).
Principal components are estimated after high-pass filtering the prepro-
cessed BOLD time series (using a discrete cosine filter with 128 s cutoff)
for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top
2% variable voxels within the brain mask. For aCompCor, three proba-
bilistic masks (CSF, WM, and combined CSF+WM) are generated in
anatomical space. The implementation differs from that of Behzadi
et al. in that instead of eroding the masks by 2 pixels on BOLD space,
the aCompCor masks are subtracted a mask of pixels that likely contain
a volume fraction of GM. This mask is obtained by dilating a GM mask
extracted from the FreeSurfer’s aseg segmentation, and it ensures compo-
nents are not extracted from voxels containing aminimal fraction of GM.
Finally, these masks are resampled into BOLD space and binarized by
thresholding at 0.99 (as in the original implementation). Components
are also calculated separately within the WM and CSF masks. For each
CompCor decomposition, the k components with the largest singular
values are retained, such that the retained components’ time series are
sufficient to explain 50% of variance across the nuisance mask (CSF,
WM, combined, or temporal). The remaining components are dropped
from consideration. The head-motion estimates calculated in the correc-
tion step were also placed within the corresponding confounds file. The
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confound time series derived from head motion estimates and global sig-
nals were expanded with the inclusion of temporal derivatives and qua-
dratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a
threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as
motion outliers. All resamplings can be performed with a single interpo-
lation step by composing all the pertinent transformations (i.e., head-
motion transform matrices, susceptibility distortion correction when
available, and coregistrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smooth-
ing effects of other kernels (Lanczos, 1964). Nongridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer). Many internal
operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly
within the functional processing workflow.

Data quality assessment. Image quality measures were obtained from
the outputs of DICOM-to-BIDS conversion using the MRIQC tool
(Esteban et al., 2017). Data quality was assessed following the criteria out-
lined by Faskowitz et al. (2020). Specifically, functional data were excluded
if >25% of the frames exceeded 0.2 mm framewise displacement (Parkes
et al., 2018) or if marked as an outlier [exceeding 1.5 × interquartile range
(IQR) in the adverse direction] in more than half of the following seven
image quality metrics (calculated within datasets, across all functional
acquisitions): dvars, tsnr, fd mean, aor, aqi, snr, and efc (refer to
MRIQC documentation for definitions). Consequently, five datasets and
two runs from two participants were excluded from the main analysis.

Functional connectivity and network analysis
Cortical parcellation. Consistent with our prior study (Alavash et al.,

2019), cortical nodes were delineated using a previously established func-
tional parcellation (Gordon et al., 2016), known for its relatively higher
accuracy compared with other parcellations (Arslan et al., 2017). This par-
cellation, comprising 333 cortical areas, is based on surface-based resting-
state functional connectivity boundary maps. To obtain the Gordon333
parcellation in subject space, we utilized the maTT toolbox as described
by Faskowitz et al. (2020). In brief, a Gaussian classifier surface atlas was
employed for each participant used in conjunction with FreeSurfer’s
mris_ca_label function to transfer the group average atlas to subject space
based on individual surface curvature and sulcal patterns, resulting in a
T1w space volume for each participant. For compatibility with functional
data, the parcellation was resampled to 2 mm T1w space.

Nuisance regression. To mitigate the effects of spurious temporal
correlations induced by physiological and movement artifacts, a nui-
sance regression procedure was implemented using the fmri-2-mqt tool-
box as described by Faskowitz et al. (2020). In this procedure, each
preprocessed BOLD image underwent linearly detrending, confound
regression, and standardization. The confound regression method mir-
rored that of our prior study (Alavash et al., 2019) and included six
motion estimates and their first-order derivatives, time series of the
mean cerebrospinal fluid, and mean white matter signal. Notably, global
signal regression was omitted from the regional time series, as the impact
of global signal regression remains uncertain in the field (Murphy and
Fox, 2016; J. D. Power et al., 2017). Importantly, our primary findings
highlight the reconfiguration of an auditory attentional-control network,
distinct from the predominantly sensorimotor disruption observed in the
global signal map (J. D. Power et al., 2017). Following preprocessing and
nuisance regression, residual mean BOLD time series were obtained for
each node, performed for both resting-state and listening task data. To
ensure signal equilibration, the first 10 volumes of resting state and
each run of the listening task were discarded.

Functional connectivity. Residual time series underwent bandpass
filtering using the maximum overlap discrete wavelet transform
(Daubechies wavelet of length eight as implemented in the waveslim R
package), focusing on the range of 0.06–0.12 Hz (wavelet scale three), con-
sistent with our prior work (Alavash et al., 2019). Prior research has dem-
onstrated that behavioral correlates of the functional connectome are best
observed by analyzing low-frequency large-scale brain networks (Z. Zhang
et al., 2016). The choice of wavelet scale three aligns with previous findings

indicating that cognitive task-related behavior predominantly correlates
with changes in functional connectivity within this frequency range
(Alavash et al., 2015a, 2018). Pearson’s correlations betweenwavelet coeffi-
cients were computed to establish the association between each pair of cor-
tical regions, resulting in one 333 × 333 correlation matrix per participant
for each resting state and run of the listening task.

Network analysis. Brain graphs were constructed from the functional
connectivitymatrices by retaining the top 10% of connections according to
the rank of their correlation strengths (van Wijk et al., 2010; van den
Heuvel et al., 2017). This process yielded sparse binary undirected brain
graphs at a fixed network density of 10, ensuring uniformity in density
across participants, resting state, and listening task. Mean functional con-
nectivity was computed as the average of the upper diagonal elements of
the sparse connectivity matrix for each participant. Additionally,
network modularity was estimated to characterize the configuration of
large-scale brain networks at a macroscopic level (Rubinov and Sporns,
2010).

Network modularity. Modularity describes the decomposability of a
network into nonoverlapping sub-networks, characterized by having rel-
atively dense intraconnections and relatively sparse interconnections.
Rather than an exact computation, modularity of a given network is esti-
mated using optimization algorithms (Lancichinetti and Fortunato,
2009; Steinhaeuser and Chawla, 2010). The extent to which a network
partition exhibits a modular organization is measured by a quality func-
tion, the so-called modularity index (Q). We used a commonmodularity
index originally proposed by Newman (2006) and employed its imple-
mentation in the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) which is based on the modularity maximization algorithm known
as Louvain (Blondel et al., 2008). The modularity index is defined as
follows:

Q = 1
2W

∑
i,j

Ai,j − g
kikj
2W

[ ]
d(ci, cj) (1)

Q ranges between −1 and 1. In Equation 1, Ai,j represents the weight
(zero or one if binary) of the links between node i and j, ki =

∑
j Ai,j is

the sum of the weights of the links connected to node i, and ci is the com-
munity or module to which node i belongs. The d-function d(u, v) is 1 if
u = v and 0 otherwise, and W = 1

2

∑
i,j Ai,j. Similar to previous work

(Bassett et al., 2010; Alavash et al., 2018), the structural resolution param-
eter g (Fortunato and Barthelemy, 2007; Lohse et al., 2014) was set to
unity for simplicity. The maximization of the modularity index Q gives
a partition of the network into modules such that the total connection
weight within modules is as large as possible, relative to a commonly
used null model whose total within-module connection weights follows
kikj
2W. Thus, a “good” partition with Q closer to unity gives network mod-
ules with many connections within and only few connections between
them; in contrast, a “bad” partition with Q closer to zero gives network
modules with no more intramodule connections than expected at ran-
dom (Good et al., 2010). Thus, higher Q reflects higher functional segre-
gation on the intermediate level of network topology (Rubinov and
Sporns, 2010; Betzel and Bassett, 2016). Due to stochastic initialization
of the greedy optimization, the module detection algorithm was applied
100 times for each brain graph, and the highest Q value obtained was
used as the modularity index in the subsequent statistical analyses.

Consensus modularity. Repetition of the module detection algorithm
leads to multiple possible high-modularity partitions that maximize Q
for a given network, resulting in module membership assignments that
vary across runs of the algorithm (Good et al., 2010). In order to account
for this variability, we used the consensus approach proposed by
Lancichinetti and Fortunato (2012) whereby an agreement matrix is cal-
culated, representing the probability of each node pair to be assigned to
the same module across iterations. Finally, the agreement matrix was
subjected to an independent module detection, resulting in an
individual-level (or group-representative when the input was group-
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average connectivity matrix) high-modularity partition. In this step, the
resolution parameter t was set to 0.75, representing the level at which the
agreement matrix was thresholded before being subjected to the final
module detection. The modularity detection was implemented with no
prior community affiliation input, hence in a purely data-driven fashion.

Group-level modularity partition. Based on the results obtained from
graph-theoretical consensus community detection (see above), group-
level functional connectivity per resting state and listening task was com-
puted by first averaging unthresholded (raw) connectivity matrices
across all participants and then including the top 10% of the connections
in the graph according to the rank of their correlation strengths (Ginestet
et al., 2011; Fornito et al., 2013). To obtain group-level modularity par-
tition, the graph-theoretical consensus community detection algorithm
was applied to the sparse group-level connectivity matrix (identical to
Bertolero et al., 2015). Similar to Gordon et al. (2016), modules with
fewer than five nodes were removed, and the result was used for visual-
ization. To functionally identify the network modules, we used the labels
assigned to each cortical node in Gordon et al. (2016).

Network visualization. Brain surfaces were visualized using
Connectome Workbench. Connectograms were visualized using Brain
Data Viewer. Network flow diagrams were visualized using MapEquation.

Statistical analysis
Behavioral data. The performance of participants in the listening

task was evaluated based on three measures: correct pitch discrimination
(response accuracy: correct/incorrect), response speed (the inverse of
response time), and confidence rating (response confidence: high/low).
Trials without a response within the response time window and those
with response times <300 ms were excluded. Single-trial behavioral mea-
sures for each participant were considered as the dependent variable in
the (generalized) linear mixed-effects analysis. In models predicting
confidence or speed, response accuracy was treated as a binary predictor.

Brain data. Statistical comparisons of connectivity and network
modularity between resting state and the listening task were conducted
using permutation tests for paired samples (the rest and task labels
were randomly permuted 10,000 times). Cohen’s d for paired samples
was used as the corresponding effect size.

Brain–behavior models. The relationship between brain activity and
behavior was explored using linear mixed-effects analysis. Each single-
trial behavioral measure (accuracy, speed, or confidence) across partici-
pants was the dependent variable. In models predicting confidence or
speed, response accuracy was used as a binary predictor. The main pre-
dictors included titrated pitch difference, time-on-task (task block num-
ber, 1–6), congruency of tone sequences (congruent vs not congruent),
location of the lateral stream (left vs right), and the role of the lateral
stream (attended vs ignored). Give the study’s focus on the reconfigura-
tion of resting-state brain networks from rest to task and its relation to
listening behavior, mean connectivity or modularity of brain networks
were used as main predictors. Specifically, the main effect of each rest
and task connectivity (or modularity) was included in the models as
between-subject covariates. Additionally, to account for activity levels
in auditory, cinguloopercular, and dorsal attention network, mean beta
estimates obtained from activation analysis were averaged within each
network and included in the models as between-subject covariates.

Categorical predictors were coded using deviation coding, and con-
tinuous variables were Z-scored. Generalized linear mixed-effects models
with the logit as a link function were used for accuracy and confidence,
while linear mixed-effects models with Gaussian distribution were used
for speed. p values for individual model terms were derived using the
Satterthwaite approximation for degrees of freedom and adjusted for
the false discovery rate. Odds ratios (ORs) were reported for accuracy
or confidence models, and regression coefficients (β) for speed models.
Analyses were conducted in R using the packages lme4 and sjPlot.

Bayes factor. To aid interpretation of significant and nonsignificant
effects, Bayes factors (BFs) were calculated based on the comparison of

Bayesian information criterion (BIC) values as proposed by
Wagenmakers (2007). BF was calculated by comparing the BIC values
of the full model to a reduced model without the accuracy × interconnec-
tivity interaction term: BF = exp([BIC(H0)−BIC(H1)] / 2). Log-BFs
larger than 1 provide evidence for the presence of an effect (i.e., the
observed data are more likely under the more complex model) whereas
log-BFs smaller than −1 provide evidence against the effect, following
conventions outlined by Dienes (2014).

Results
The auditory attention paradigm allowed listeners to judge the
direction of pitch change in the to-be-attended auditory object
clearly above chance (with an accuracy of ∼70%) but left them
uncertain about their own selective perceptual decisions, as
reflected in an overall response confidence of ∼50% (Fig. 1B,
left). Across listeners, the subjective assessment of one’s own per-
ceptual decision varied considerably, as did listeners’ response
speed (Fig. 1B, right).

Guided by our previous fMRI study on the brain network
account of spatial selective auditory attention (Alavash et al.,
2019), we predicted that during the task brain networks would
reconfigure toward higher functional segregation as quantified
by network modularity. Importantly, we asked whether such
reconfiguration could explain interindividual variability in listen-
ing behavior. To this end, we used (generalized) linear
mixed-effects models (GLMMs) to examine the influence of
the experimental conditions and brain network dynamics on lis-
teners’ single-trial behavior measured using response accuracy,
speed, and confidence.

High interindividual variability in response speed and
confidence during selective pitch discrimination
The average pitch difference between consecutive tones (i.e., the
stimulus parameter tracked per listener adaptively; Fig. 1A, Δf0)
was 0.84 semitones (±0.69 semitones between-subject SD). As
intended, the resulting accuracy (average proportion correct)
was 71% (±3.6% between-subject SD).

Notably, as illustrated in Figure 1B, listeners showed consider-
able interindividual variability in their response speed (mean± SD
response speed= 1.23 ± 0.37 s−1; coefficient of variation= 0.3) and
in their confidence (average proportion and SD of “confident”
responses = 48%± 28%; coefficient of variation = 0.58).

Lending plausibility to the behavioral results obtained, single-
trial listening behavior confirmed the beneficial effect of pitch
difference on listeners’ behavior, i.e., the larger the pitch difference,
the better the behavioral performance (GLMMs; accuracy: OR=
1.42, p< 0.001; speed: β=0.26, p< 0.01; confidence: OR= 2.97,
p< 0.001). Listeners also showed more accurate and faster perfor-
mance when the direction of the pitch change was congruent
across the two tone sequences (accuracy: OR=3.06, p< 0.001;
speed: β= 0.08, p< 0.01). In addition, listeners were less confident
when the to-be-attended tone sequence was presented in the front
compared with the side (OR=0.84; p< 0.01). All of these effects
were very well in line with the results we found in our previous
EEG study in which the stimuli during the same task were pre-
sented in free field using loudspeakers (Wöstmann et al., 2019a).

Of relevance to all further brain–behavior results, the three
behavioral measures proved sufficiently reliable. Only if they
are sufficiently reliable, meaning that individual data on repeated
tests correlate positively, can any brain–behavior relation, which
is the main scope here, be interpreted in a meaningful way
(Guggenmos, 2021). Using the individual data across six blocks
of the task, we calculated the reliability metric Cronbach’s alpha
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(CA) for each measure. The results indicated relatively high reli-
ability for each behavioral measure, particularly for response
speed and confidence (accuracy: CA= 0.58, speed: CA= 0.95,
confidence: CA= 0.98).

Adaptive tracking of individual accuracy at ∼70% throughout
the experiment allowed us to split listeners’ single-trial responses
into correct and incorrect judgments. Specifically, on average, lis-
teners performed 486.89 ± 69.04 trials over six blocks of the task
[excluding timeouts and trials with reaction times (RT) < 0.3 s or
RT > 3 s relative to the onset of the second tone]. Out of these,
346.19 ± 55.89 trials were correct and 133.6 ± 32.35 were incor-
rect. Accordingly, to investigate the relation between response
accuracy and speed or confidence across listeners, we used single-
trial accuracy as a binary predictor in linear mixed-effects models
predicting single-trial response speed or confidence, separately.
This analysis revealed that listeners were faster and more confi-
dent in their responses on correct trials as compared with incor-
rect trials (speed: β= 0.33, p < 0.001; confidence: OR= 1.89, p <
0.001; Fig. 1C). Important to the questions asked here, the indi-
vidual ability to reflect on their own auditory perceptual decision
varied markedly between listeners: while some listeners showed
“overconfident” behavior (i.e., a high proportion of confident
responses on incorrect trials), some showed “under-confident”

behavior (i.e., a low proportion of confident responses on correct
trials).

Higher modularity of cortical networks during selective pitch
discrimination
Using fMRI data, we initially investigated whether there is an
increase in functional segregation of large-scale brain networks
during the listening task. Our primary analysis involved compar-
ing the functional segregation of brain networks during the task
with that during rest. Functional segregation was assessed using
modularity, a graph-theoretical measure capturing network
decomposability into subsystems (Rubinov and Sporns, 2010;
Fig. 3A). Modularity has been linked to cognitive flexibility and
adaptive behaviors (Bassett et al., 2010; Alavash et al., 2015b;
Bertolero et al., 2018). Building on our prior fMRI study
(Alavash et al., 2019), we hypothesized an increase in brain net-
work modularity during the selective pitch discrimination task
compared with resting state.

Our network analysis revealed a significant increase in net-
work modularity during the task compared with rest (permuta-
tion test; Cohen’s d= 0.3; p= 0.02; Fig. 2B, left). Notably, there
was no difference in overall mean functional connectivity
between resting-state and listening task networks (Cohen’s d=
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−0.01; p= 0.93). This underscores the importance of modular
reconfiguration (i.e., changes in network topology) in adapting
brain networks to the current task context, as opposed to mere
alterations in overall functional connectivity. This finding aligns
well with our previous study, where whole-brain network modu-
larity increased during a dichotic listening task with concurrent
speech (Alavash et al., 2019).

In an additional analysis, we explored the correlation
between resting-state and task brain connectivity and network
modularity separately. Reassuringly, both measures exhibited
positive correlations across participants (connectivity: Spearman’s
rho=0.5, p<0.01; modularity: rho= 0.61, p<0.01), supporting the
notion that both state- and trait-like determinants contribute to
individuals’ brain network configurations (Geerligs et al., 2015).
To lending generality to all further results, we found no significant
differences in network modularity between attending left versus
attending right (permutation test; d=0.04; p=0.5), left versus front
(d=0.03; p=0.75), or right versus front (d=0.01; p=0.86).

Subsequently, we explored whether the reconfiguration of
whole-brain networks from rest to task could explain interindi-
vidual variability in listening behavior (Fig. 1C). Using the
same linear mixed-effects model that demonstrated the beneficial
effects of pitch difference and congruency of tone pairs on objec-
tive and subjective measures of behavior, we examined the direct
and interactive effects of brain network modularity during the
task in predicting listeners’ behavior. By incorporating single-
trial accuracy as a binary predictor in our models, we were also
able to test the interaction between network modularity and
accuracy in predicting response speed or confidence. These mod-
els also included whole-brain mean connectivity as a between-
subject covariate.

We found a significant main effect of network modularity in
predicting single-trial response confidence [OR= 0.85; p < 0.01,
log(BF) = 3.77; Fig. 3B]. This result indicated that those listeners
who showed higher brain network modularity during the task
performed less confidently. However, prediction of confidence
from network modularity did not differ between correct and
incorrect judgments (modularity × accuracy interaction: OR=
1.09; p= 0.15). Taken together, these results provided initial evi-
dence that, at the whole-brain level, reconfiguration of network

modules is task-relevant, as it has the potential to explain individ-
ual differences in listeners’ response confidence.

The effects of pitch difference, congruency of the tone pairs, or
the role of the lateral stream (i.e., to-be-attended or to-be-
ignored) on single-trial confidence ratings did not moderate
the whole-brain network modularity effects. Adding an interac-
tion term between these experimental conditions and brain net-
work modularity did not significantly improve model fit
(likelihood ratio tests; pitch difference: χ2 = 0.54, p= 0.45; con-
gruency: χ2 = 0.01, p= 0.92; role of the lateral stream: χ2 = 3.2,
p= 0.07). Also, the interaction between rest and task modularity
did not contribute to predicting single-trial accuracy or response
speed (accuracy: OR= 1.02, p= 0.79; speed: β=−0.02, p= 0.35).

In the following sections, we investigated the cortical origin of
the modular reconfiguration outlined above: first, at the whole-
brain level and second, at subnetwork and nodal levels in more
detail. In the final section of the results, we will illustrate how
these network dynamics can explain metacognitive differences
in listening behavior.

Reconfiguration of auditory and attentional-control networks
during selective pitch discrimination
Figure 3C provides a comprehensive overview of group-level
brain networks, functional connectivity maps, and the corre-
sponding connectograms (circular diagrams) during resting state
(Fig. 3C, left) and the listening task (Fig. 3C, right). In Figure 3,
cortical regions defined based on Gordon parcellation (Gordon
et al., 2016) are grouped and color coded according to their mod-
ule membership determined using the graph-theoretical consen-
sus community detection algorithm (see Materials and Methods,
Network modularity). When applied to the resting-state data in
our sample (N= 40), the algorithm decomposed the group-
averaged whole-brain network into six modules (Fig. 3C, left).
The network module with the highest number of nodes largely
overlapped with the known default mode network (Fig. 3C,
dark blue). Guided by our previous study (Alavash et al.,
2019), our investigation was particularly focused on the module
comprising mostly auditory nodes and a number of cingulooper-
cular nodes (Fig. 3C, yellow). For simplicity, similar to Alavash
et al. (2019), we will refer to this module as the auditory module.
Additional network modules included visual (Fig. 3C, cyan),
somatomotor (Fig. 3C, light blue), dorsal attention (Fig. 3C,
green), and frontoparietal module (Fig. 3C, red).

Figure 3C illustrates how the configuration of the whole-brain
network changed from rest to task. This network flow diagram
illustrates whether and how cortical nodes belonging to a given
network module during resting state (Fig. 3C, left) changed their
module membership during the listening task (Fig. 3C, right).
The streamlines depict how the nodal composition of network
modules changed, indicating a functional reconfiguration.
According to the streamlines, the auditory and dorsal attention
modules showed the most prominent reconfiguration (Fig. 3C,
yellow and green modules, respectively), while the other modules
underwent only moderate reconfiguration. This reconfiguration
aligns well with the results found in our previous study, in which
participants completed resting state followed by a selective listen-
ing task with concurrent speech.

Specifically, this reconfiguration can be summarized by a
nodal “branching” of the auditory module during selective pitch
discrimination (Fig. 3C, left gray box) accompanied by the for-
mation of a module composed of cinguloopercular, somatomo-
tor, dorsal attention, and visual nodes. Given the pure auditory
nature of the listening task here, the less prominent changes in
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visual nodes seem unlikely to be behaviorally relevant to task per-
formance. To rule this out, for our brain–behavior models, we
conducted control analyses in which the main predictors were
derived from visual or somatomotor networks (see below,
Control analyses). Taken together, we observed a reconfiguration
of the whole-brain network that is dominated by alterations
across auditory, cinguloopercular, and dorsal attention nodes.

Accordingly, we next identified the cortical origin of these net-
work dynamics based on the underlying functional parcellation
(Gordon et al., 2016). The identified subnetwork entails auditory,
cinguloopercular, and dorsal attention nodes. We will refer to this
large-scale cortical subnetwork collectively as the auditory
attentional-control network. This subnetwork encompasses 96
nodes (of 333 whole-brain nodes). According to Figure 3C, this
subnetwork is, in fact, a conjunction across all auditory, cinguloo-
percular, and dorsal attention nodes. For the purpose of a more
transparent illustration, the cortical map of the auditory
attentional-control network is visualized in Figure 4A.

Modulation of interconnectivity across the auditory
attentional-control network
To uncover the network dynamics driving the modular reconfi-
guration of the auditory attentional-control network in adaptation
to the listening task, we explored whether and how connectivity
within and between auditory, cinguloopercular, and dorsal
attention nodes changed during the task compared with rest.

The results are visualized in Figure 4B. We found two distinct
patterns of connectivity changes across the auditory attentional-
control network. First, from rest to task, mean connectivity
between auditory and cinguloopercular network (AUD–CO)
was decreased significantly (Cohen’s d=−0.5; p < 0.01; Fig. 4B,
left). Second, mean connectivity between cinguloopercular and
dorsal attention network (CO–DA) increased significantly
(Cohen’s d= 0.96; p < 0.01; Fig. 4B, right). Additionally, connec-
tivity between auditory and dorsal attention network was
increased, but the degree of this modulation did not reach the
significance level (Cohen’s d= 0.36; p= 0.08; Fig. 4B, bottom).

It is worth noting that mean connectivity within the auditory,
cinguloopercular, or dorsal attention networks did not signifi-
cantly differ from rest (Fig. 4B, gray self-connections). This
observation underscores the importance of functional interplay
between auditory and attentional-control networks (i.e., inter-
connectivity) in regulating or contributing to the metacognitive
aspects of listening behavior.

Interestingly, the interconnectivity between AUD–CO
and CO–DA was not correlated across participants during
both rest and task (rest: rho =−0.14, p = 0.4; task: rho =−0.03,
p= 0.86). This suggests the presence of two dissociable large-scale
networked systems shaping metacognitive performance during
listening.

Subsequently, we performed a nodal analysis to identify the
cortical regions responsible for the change of interconnectivity
across the auditory attentional-control network. To this end, we
used a simple graph-theoretical measure—nodal connectivity (or
nodal strength)—which is defined as the sum of each node’s
connection weights. Through permutation tests comparing
nodal connectivity between rest and task, we found that connectiv-
ity of mainly supramarginal gyri, anterior insular, and anterior/
mid-cingulate cortices was significantly decreased during the
selective pitch discrimination task relative to rest [−1 <Cohen’s
d<−0.53; p< 0.01; false discovery rate (FDR)-corrected for
multiple comparisons across nodes; Fig. 4C, blue]. Additionally,
we found significant increase in connectivity in cortical

nodes overlapping with parietal lobules and frontal eye fields
(0.43 <Cohen’s d< 1; p< 0.01; Fig. 4C, red).

Interconnectivity of auditory attentional-control network
predicts metacognitive differences in listening behavior
As depicted in Figure 4B, listeners exhibited clear interindividual
variability in the degree and direction of change in AUD–CO and
CO–DA interconnectivity. Thus, we next explored whether these
variabilities could explain interindividual differences in listening
behavior reported earlier (Fig. 1C). To this end, we examined the
direct and interactive effects of individual mean interconnectivity
during rest and task on single-trial response accuracy, speed, or
confidence. Specifically, joint analysis of single-trial response
accuracy with speed and confidence allowed us to investigate
whether and how the interconnectivity dynamics underlie indi-
vidual differences in metacognitive performance, namely,
response speed or confidence after correct/incorrect judgments.
These analyses are based on the same linear mixed-effects models
that revealed the beneficial effects of pitch difference and congru-
ency on behavior as well as higher confidence and response speed
on correct trials compared with incorrect trials ones.

The relationships between brain connectivity and behavior
were examined separately for each AUD–CO and CO–DA net-
work pair. In each model, brain regressors were included as
between-subject covariates. In our models, we controlled for
the activity level of each auditory, cinguloopercular, and dorsal
attention network by incorporating mean beta estimates derived
from nodal activation analysis (i.e., univariate general linear
models) as additional between-subject covariates (see below,
Control analyses).

Firstly, AUD–CO interconnectivity and response accuracy
interacted in predicting listeners’ response confidence [OR=
0.87; p < 0.05, log(BF) = 2.44; Fig. 5A]: Across listeners, lower
AUD–CO interconnectivity was associated with lower confi-
dence in their own perceptual judgments (main effect of AUD–
CO interconnectivity on response confidence; OR= 1.13;
p < 0.001), with this relationship being more pronounced follow-
ing incorrect judgments compared with correct ones (incorrect:
OR= 1.25; correct: OR= 1.09). Additionally, lower AUD–CO
interconnectivity overall predicted slower decision-making dur-
ing the task [β= 0.08; p < 0.001; log(BF) = 13.73], with no differ-
ence in the degree of this effect between correct and incorrect
judgments (interaction term: β=−0.02; p= 0.67).

Secondly, the dynamics of CO–DA interconnectivity pre-
dicted individual differences in response confidence (Fig. 5B).
Specifically, we found a significant interaction between
CO–DA interconnectivity and response accuracy in predicting
listeners’ confidence [OR= 1.14; p < 0.05; log(BF) = 1.53;
Fig. 5B]: Across listeners, higher CO–DA interconnectivity was
associated with less confident behavior (main effect of CO–DA
interconnectivity on response confidence: OR= 0.88; p < 0.001).
This negative relationship was also more pronounced after incor-
rect judgments compared with correct ones (incorrect: OR= 0.8;
correct: OR= 0.96).

In additional analyses, we investigated the possibility that
these correlations might be driven by aspects related to response
speed, potentially explaining the salience of the links observed in
incorrect trials associated with slower responses. We thus
included single-trial speed as an additional covariate in models
predicting confidence. As expected, during trials on which listen-
ers were confident in their decisions, their responses were also
faster (main effect of response speed on single-trial confidence:
OR= 2; p < 0.01). Importantly, however, the interactions between
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interconnectivity of each network pair and accuracy in predicting
confidence remained almost unchanged when accounting for
speed in the models (AUD–CO model: OR= 0.87, p= 0.01;
CO–DA: OR= 1.12, p= 0.07). In addition, in models predicting
response speed, the interactions between interconnectivity of
each network pair and accuracy were not significant (AUD–

CO: β=−0.02, p= 0.67; CO–DA: β= 0.02, p= 0.63). Taken
together, the salience of the links observed in incorrect trials
was specific to prediction of confidence, and not speed.

After uncovering the link between the interconnectivity
dynamics of the auditory attentional-control network and indi-
vidual listening behavior, we proceeded to identify which cortical

Figure 4. Modulation of connectivity across auditory and attentional-control networks. A, The auditory attentional-control network composed of auditory (AUD), cinguloopercular (CO), and
dorsal attention (DA) nodes. Nodes are identified according to their labels in Gordon parcellation. The correlation structure and connection pattern across these nodes are illustrated by group-level
functional connectivity matrix and the connectogram (circular diagram), respectively. Gray peripheral bars around the connectogram indicate the number of connections per node. B, Modulation
of cinguloopercular connectivity with auditory and dorsal attention networks during the listening task. From rest to task, AUD–CO mean interconnectivity decreased (left plot), whereas CO–DA
interconnectivity increased (right plot). Mean connectivity across nodes within each network or between auditory and dorsal attention networks did not change significantly (middle graph, gray
arrows). Histograms show the distribution of the change (task minus rest) across all 40 participants. C, Modulation of nodal connectivity across the auditory attentional-control network. Nodal
connectivity (also known as strength) was quantified as the sum of correlation values per node. The result was compared between task and rest per node using paired permutation tests and
corrected for multiple comparison across nodes (FDR correction at significance threshold 0.01). Nodes exhibiting significant decrease in their connectivity during the listening task overlapped with
the bilateral supramarginal gyri (SMG), the left anterior insula, and the anterior/middle cingulate cortices (A/MCC). Nodes showing significant increase in their connectivity overlapped with the
superior parietal/intraparietal lobule (SPL/IPL) and the frontal eye fields (FEF). CS, central sulcus; HG, Heschl gyrus; IFG, inferior frontal gyrus; STG/S, superior temporal gyrus/sulcus.
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regions within this network could explain metacognitive differ-
ences in listening behavior. For this purpose, we estimated a lin-
ear mixed-effects model for each node within the auditory
attentional-control network, similar to the brain–behavior anal-
yses reported above. In these models, however, we substituted the
predictor representing the mean interconnectivity of the network
pairs (i.e., AUD–CO or CO–DA mean interconnectivity) with
nodal connectivity of each region within the auditory attentional-
control network. Consequently, the p values obtained for the
interaction between nodal connectivity and response accuracy
were adjusted for multiple comparisons across nodes (FDR cor-
rection at a significance threshold 0.01).

We found significant interactions between response accuracy
and nodal connectivity of brain regions overlapping with the audi-
tory/insular, superior parietal, and middle cingulate cortices
(Fig. 6A). The direction of these interactions differed between
two sets of nodes. Specifically, cortical nodes near the Heschl gyrus
(HG), anterior insula (AI), and middle cingulate cortex (MCC)
exhibited odds ratios smaller than one, indicating a relation
between their nodal connectivity and listeners’ response confi-
dence consistent with the effect found based on mean AUD–CO
interconnectivity (Fig. 6A, blue regions). In contrast, cortical nodes
near the bilateral superior parietal lobule (SPL) and left inferior
parietal lobule (IPL) showed odds ratios larger than one, indicating
a relationship between their nodal connectivity and listeners’
response confidence consistent with the effect found based on
mean CO–DA interconnectivity (Fig. 6A, red regions).

To illustrate, interactions found in the left IPL and right MCC
are shown in Figure 6B. Consistent with the results obtained
based on mean AUD–CO interconnectivity (Fig. 5A), we found
a significant interaction between nodal connectivity of the right
MCC and response accuracy in predicting listeners’ confidence

[OR= 0.76; p < 0.001; log(BF) = 16.4; Fig. 6B, left]. This finding
indicates that lower nodal connectivity of the right MCC was
associated with less confident responses across listeners, but
this relationship was specific to incorrect judgments (incorrect:
OR= 1.2; correct: OR = 0.97). Additionally, in line with the
results obtained based on mean CO–DA interconnectivity
(Fig. 5B), we found a significant interaction between nodal con-
nectivity of the left IPL and response accuracy in predicting lis-
teners’ confidence [OR= 1.35; p < 0.001; log(BF) = 17.1; Fig. 6B,
right]: Higher nodal connectivity of the IPL was associated
with less confident responses across listeners, but this relation-
ship was specific to incorrect judgments compared with correct
ones (incorrect: OR= 0.77; correct: OR= 0.98).

Control analyses
Our findings illustrate that the dynamics of interconnectivity
across the auditory attentional-control network could partly
explain individual differences in subjective listening behavior.
These dynamics were expressed as modulation of mean connec-
tivity between network pairs defined using average Pearson’s cor-
relations, a commonly used measure of functional connectivity.
Accordingly, one question is to what extent the brain–behavior
relations observed here are driven by changes in cortical activity
level rather than changes in correlation strength. In addition,
from rest to task, the somatomotor and visual networks also
underwent a moderate reconfiguration (Fig. 3C). Thus, another
question is whether interconnectivity with somatomotor or
visual network can predict listeners’ behavior. Therefore, we con-
ducted a set of control analyses to ensure that the brain–behavior
findings are not trivial.

First, all of the brain–behavior models have been adjusted for
individual mean cortical activity of each auditory,
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cinguloopercular, and dorsal attention network by including
between-subject covariates of mean beta estimates derived
from activation analysis (Fig. 7). Also, none of these potential
confounding predictors on behavior proved to be significant
(Table 1).

Second, we tested additional brain–behavior models in which
the connectivity regressors were defined based on interconnec-
tivity between each somatomotor or visual network with the
auditory, cinguloopercular, or dorsal attention network.
Identical to our main analysis, these models were tested sepa-
rately for each network pair in predicting single-trial response
confidence. The results are provided in Table 2. We only found
a significant interaction between response accuracy and inter-
connectivity of somatomotor and auditory networks in predict-
ing listeners’ response confidence (OR= 0.86; p < 0.01). This
result indicates that lower AUD–SM interconnectivity predicted

lower response confidence on incorrect trials, similar to the
results obtained based on AUD–CO interconnectivity.

In additional analyses we investigated the degree to which
individual metacognitive differences might be related to hearing
sensitivity, pitch discrimination ability, or task difficulty. To this
end, we included two additional covariates in our models: (1)
individuals’ hearing thresholds measured using PTA (averaged
between left and right ear within frequencies 0.5, 1, 2, and
4 kHz) and (2) listeners’ ratings of their own musical ability
(ranging from 1 for expert to 6 for naive;M± SD= 3± 1.7) which
we collected at the end of the experiment. Neither of these mea-
sures had a significant effect on response confidence (PTA: OR=
1.25, p= 0.78; musical experience: OR = 0.5, p= 0.08). In addi-
tion, across listeners, neither of the correlations between overall
mean response accuracy or pitch difference and mean response
confidence were significant (accuracy: Spearman’s rho =−0.12,
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p= 0.48; pitch difference: rho = 0.1, p= 0.54). These suggest that,
across listeners, metacognitive differences were unlikely to be
related to differences in task difficulty. Importantly, our main
findings, i.e., the interaction between brain interconnectivity
and accuracy in predicting confidence (Fig. 5), remained signifi-
cant after these covariates were accounted for.

Discussion
The aim of our study was to elucidate the variability among indi-
viduals in the subjective aspects of listening behavior by examin-
ing the dynamics of cortical networks related to audition and
cognitive control. Importantly, we rigorously controlled and
evaluated listening behavior objectively using response accuracy
or speed, while also allowing listeners to subjectively reflect on
their own perceptual decisions by reporting their response confi-
dence. Our focus was on the considerable variability observed in
this metacognitive aspect of listening behavior.

First, by investigating the modular reconfiguration of brain
networks from a resting state to task engagement, we identified
the auditory attentional-control network. Subsequently, across
this network and on an individual level, we found that task per-
formance influenced the interconnectivity between the cinguloo-
percular network and each of the auditory and dorsal attention
networks. The results obtained from our brain–behavior analyses
supported the functional significance of these interconnectivity
dynamics.

In summary, our findings suggest that decreased inter-
connectivity between auditory and cognitive control network
(AUD–CO) and increased interconnectivity between cognitive
control and dorsal attention networks (CO–DA) are indicative
of heightened metacognitive sensitivity, specifically lower
confidence in responses following incorrect judgments.
These network configurations may facilitate listeners’ accurate
self-assessment of their auditory perceptual decision.
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Figure 7. Group-level activation maps of task events. To derive individual estimates of cortical activity in response to different task events, an activation analysis using univariate general linear
models (GLMs) was conducted and individual statistical parametric maps were obtained. The GLM model was estimated per cortical node of the parcellation used for connectivity analysis. The
design matrix included the following regressors: cue left, cue right, cue front, concurrent tones (modeled as 1 s epoch), and button press. The onset of these events in milliseconds was convolved
with canonical hemodynamic response function (HRF) with temporal resolution of 1 ms, and the results were downsampled to one TR (i.e., 1 s). These regressors were used to predict the same
nodal time series used for connectivity analysis, i.e., the mean BOLD time series recovered following nuisance regression and bandpass filtering per node. Finally, group-average statistical maps
were obtained by submitting the beta estimates to one-sided t tests (against implicit baseline) per node, and the results were thresholded at p< 0.01 following correction for multiple com-
parisons across nodes using family-wise error correction (FEW) procedure. The resulting corrected maps are visualized for different conditions in (A) cue left, (B) cue right, (C) cue front, and (D)
concurrent tone presentation. None of the differential contrasts across the cue conditions, i.e., left versus right or left/right versus front, survived the significance threshold.

Table 1. Summary table of control analyses: prediction of response confidence from
mean activity level of cortical networks

Network Event onset Main effect of mean beta estimate

AUD Spatial cue OR = 0.6
p= 0.53

CO Spatial cue OR = 0.8
p= 0.7

DA Spatial cue OR = 1.9
p= 0.39

AUD Tone sequence OR = 1.3
p= 0.7

CO Tone sequence OR = 1.6
p= 0.76

DA Tone sequence OR = 0.75
p= 0.77

AUD, auditory; CO, cinguloopercular; DA, dorsal attention.

Table 2. Summary table of control analyses: prediction of response confidence from
mean interconnectivity of other networks

Network pair Accuracy × interconnectivity

SM–AUD OR = 0.86
p= 0.003

SM–CO OR = 0.97
p= 0.63

SM–DA OR = 1.08
p= 0.24

VIS–AUD OR = 0.89
p= 0.1

VIS–CO OR = 0.96
p= 0.72

VIS–DA OR = 0.93
p= 0.53

AUD, auditory; CO, cinguloopercular; DA, dorsal attention; SM, somatomotor; VIS, visual.
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Overall, our results indicate that in situations where listeners
make metacognitive judgments about auditory information, the
brain networks adaptively reconfigure toward a more introspec-
tive, control mode. This proposition will be further elaborated
upon in subsequent sections.

Metacognitive facets of adaptive listening behavior
Our listening paradigm exemplifies a situation where each lis-
tener performed well in terms of first-order performance, yet
there was variation in self-awareness regarding one’s own per-
ception among listeners. This underscores an important aspect
in the study of adaptive listening behavior, which can be formal-
ized within the scope of metacognition as “metacognitive perfor-
mance,” defined as the ability to introspect about the correctness
of one’s own thoughts and actions (Fleming et al., 2012a). This
additional dimension could complement other factors such as
motivation or effort in the study of listening behavior (Pichora-
Fuller et al., 2016; Peelle, 2018). An intriguing question arises:
how do metacognitive judgments relate to an individual’s moti-
vation in challenging listening situations? The present experi-
mental design does not allow measuring motivation, as it was
not themain scope of the study (Kraus et al., 2024). An important
distinction here, however, would be the introspective, thus self-
monitoring nature of meta-listening.

While previous research has linked individual differences in
brain structure and function to such variations (Ais et al.,
2016), our findings specifically associate this variability with indi-
vidual differences in the interconnectivity dynamics of two corti-
cal networked systems, as discussed below.

Interconnectivity of auditory and cinguloopercular networks
regulates perceptual decision confidence during listening
Our first main finding was that lower connectivity between audi-
tory and cinguloopercular network predicted slower and less
confident responses during the listening task, the latter link being
more pronounced for incorrect judgments (Fig. 5A). This result
is in line with the increase in network modularity (equivalently,
functional segregation) observed on the whole-brain level and in
particular the prediction of less confident responses from greater
functional segregation of brain networks (Fig. 3B).

Previous fMRI studies consistently demonstrate that cingu-
loopercular activity correlates with word recognition in
speech-in-noise experiments (Vaden et al., 2013, 2019; Eckert
et al., 2016). Recently, using a perceptual decision-making model,
it has been shown that cinguloopercular activity contributes to
criteria adjustments to optimize speech recognition performance
(Vaden et al., 2022). In parallel, visual studies have shown that
cinguloopercular network displays sustained activity during per-
ceptual processing (Sestieri et al., 2014), with its activity level
relating to the speed of stimulus detection (Coste and
Kleinschmidt, 2016). These findings can be interpreted in the
light of the proposed role for cinguloopercular cortex in perfor-
mance monitoring and more generally, adaptive control
(Dosenbach et al., 2008; J. D. Power and Petersen, 2013; Neta
et al., 2014, 2017).

Interestingly, previous work on neural correlates of metacog-
nition during decision-making behavior supports the role of
frontal brain areas in subjective sense of decision confidence
(Vaccaro and Fleming, 2018). Specifically, studies have found
that explicit confidence estimates are tracked in cortical areas
including the medial/rostrolateral prefrontal cortex (De
Martino et al., 2013; Hebart et al., 2016) and dorsal anterior cin-
gulate cortex (Fleming et al., 2012b, 2014). Additionally, the

medial prefrontal cortex has been linked to inter- and intraindi-
vidual variation in explicit confidence estimates (Bang and
Fleming, 2018). Direct evidence comes from an animal study
which associated the orbitofrontal cortex with confidence-based
behaviors (Kepecs et al., 2008). In our data, this is supported by a
link between connectivity of a node within the right MCC and
listeners’ response confidence on incorrect trials (Fig. 6B).

The functional overlap between the cinguloopercular net-
work, adaptive control, and frontal cortical areas representing
decision confidence aligns with the notion of a domain-general
role of the cinguloopercular network in the neural representation
of metacognitive performance (Baird et al., 2013; Rouault et al.,
2018, 2023).

Interconnectivity of cinguloopercular and dorsal attention
networks supports metacognition during selective listening
As second main finding, higher interconnectivity between cingu-
loopercular and dorsal attention networks predicted listeners’
lower confidence during the task after incorrect judgments
(Fig. 5B). Selective attention, especially in visual and spatial
domains, is known to recruit dorsal attention network
(Corbetta et al., 2008; Petersen and Posner, 2012; Posner, 2012;
Vossel et al., 2014). Neuroimaging studies have shown that spa-
tial auditory attention recruits some of the same cortical regions
as visuospatial attention (Lee et al., 2014). In addition, it has been
shown that cinguloopercular network is flexibly linked with dor-
sal attention network during visuospatial or memory search,
respectively, consistent with the characterization of the cinguloo-
percular network as a domain-general task-control system
(Sestieri et al., 2014). Studies in nonhuman animals have also
associated the canonical nodes of dorsal attention network,
namely, inferior parietal sulcus and frontal eye fields, to metacog-
nitive performance during visual–spatial tasks (Kiani and
Shadlen, 2009; Middlebrooks and Sommer, 2012).

Comparison with previous work
Our study stands out in two significant ways. Firstly, unlike pre-
vious studies which focused on word recognition task or categor-
ical perceptual decision-making tasks, our task required listeners
to flexibly shift andmaintain auditory attention on a trial-by-trial
basis, while monitoring their perception and reporting their deci-
sion confidence. Thus, our task design allowed a combined anal-
ysis of both objective and subjective behavior during adaptive
listening. To our knowledge, this is the first study that casts the
problem of adaptive listening behavior into the flourishing
framework of metacognition in perceptual decision-making.

Secondly, while previous studies on metacognition often
establish correlations between brain activity and a latent state
of uncertainty estimated using computational models (Walker
et al., 2023), our study instead took a connectionist approach
and investigated individual differences in meta-listening within
auditory and higher-order attentional-control networks.

Limitations and future directions
The interconnectivity dynamics uncovered in our study suggest a
potential role of network hubs in guiding individuals’ meta-
listening (cf. Gratton et al., 2017). Control networks do not func-
tion in isolation but rather exhibit context-dependent dynamic
interactions during adaptive behaviors (Menon and D’Esposito,
2022).

On a neurophysiological level, previous research from our lab
has provided important insights into how the dynamics of low-
frequency neural oscillations underlie individual differences in
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objective measures of listening behavior (Alavash et al., 2017;
Wöstmann et al., 2019a; Alavash et al., 2021; Tune et al., 2021).
Recent studies on the neural correlates of metacognition during
perceptual decision-making suggest a link between prestimulus
neural activity in the alpha frequency range and confidence
(Kayser et al., 2016; Wöstmann et al., 2019b). Given the associa-
tions between modulations in alpha oscillations and the activity
of cinguloopercular and dorsal attention networks (Sadaghiani
and Kleinschmidt, 2016), it is conceivable that alpha oscillations
organize the interconnectivity dynamics found in our study.

Lastly, our findings hold potential clinical implications.
Age-related hearing loss often affects the neural and behavioral
implementation of auditory selective attention to varying degrees
among individuals (Dai et al., 2018; Tune et al., 2021). Objective
measures of listening behavior, however, are increasingly recog-
nized to not fully capture the problems that hearing impaired indi-
viduals experience in demanding listening situations (Wöstmann
et al., 2021). To understand, predict, or compensate this deficit at
the individual level, it is essential to find neural signatures of also
subjective listening performance. As this initial study demon-
strates, how hearing loss might affect the capacity to monitor or
calibrate one’s own listening behavior (i.e., meta-listening) is
uncharted. Our study suggests interareal connectivity of brain net-
works as a first approximation for addressing this question at both
the behavioral and neural levels (Waters et al., 2012).

Data Availability
The complete dataset associated with this work, including MRI
data in BIDS format, is publicly available on the Open Science
platform OSF at https://osf.io/a9cte/.
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