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Abstract

Enhanced alpha power compared to a baseline can reflect states of increased
cognitive load, for example when listening to speech in noise. Can knowledge about
when to listen (temporal expectations) potentially counteract cognitive load and
concomitantly reduce alpha? The current magnetoencephalography (MEG)
experiment induced cognitive load using an auditory delayed-matching-to-sample
task with two syllables S1 and S2 presented in speech-shaped noise. Temporal
expectation about the occurrence of S1 was manipulated in three different cue
conditions: “Neutral” (uninformative about foreperiod), “early-cued” (short
foreperiod), and “late-cued” (long foreperiod). Alpha power throughout the trial was
highest when the cue was uninformative about the onset time of S1 (neutral) and
lowest for the late-cued condition. This alpha-reducing effect of late compared to
neutral cues was most evident during memory retention in noise and originated
primarily in the right insula. Moreover, individual alpha effects during retention
accounted best for observed individual performance differences between late-cued
and neutral conditions, indicating a tradeoff between allocation of neural resources
and the benefits drawn from temporal cues. Overall, the results indicate that
temporal expectations can facilitate the encoding of speech in noise, and

concomitantly reduce neural markers of cognitive load.
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Oscillatory alpha power recorded with magneto- or electroencephalography (M/EEG;
8—13 Hz) is studied extensively in the fields of attention and working memory. In the
current study, we were particularly interested in the cognitive load associated with
the retention of to-be-remembered items in working memory. In the visual,
somatosensory, and auditory domains, increases in alpha power have been
associated with performance of working memory tasks (Jensen et al. 2002; Leiberg
et al. 2006; Haegens et al. 2010). Moreover, alpha power parametrically increases
with the number of to-be-remembered items (Jensen et al. 2002; Leiberg et al. 2006;
Obleser et al. 2012), and thus provides further evidence that alpha indexes cognitive
load associated with item retention. In particular, within the framework of the
“functional inhibition” hypothesis, it has been argued that higher alpha power during
item retention in working memory reflects the inhibition of task-irrelevant
information (for review see’ Klimesch 2012) and/or brain regions (for review see
Jensen and Mazaheri 2010).

Compatible with the “functional inhibition” framework, a decrease of alpha
power can be related to active stimulus processing (e.g., Hanslmayr et al. 2012) and
to increased excitability in sensory cortices (e.g., Jensen et al. 2012; Lange et al.
2013). Moreover, controlled inhibition (as reflected by alpha power increases) and
active processing (as reflected by alpha power decreases) are likely to play a role in
improving the signal-to-noise ratio (SNR) of the relevant information stored in
memory (for review see Weisz et al. 2011; Klimesch 2012).

Reasoning from the “functional inhibition” hypothesis, we chose to examine

working memory performance for speech items embedded in noise, where the noise
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creates cognitive load that raises the need to increase functional inhibition.
Degraded speech is hypothesized to increase memory load mainly due to the
additional resources and time needed to encode and subsequently process the
speech signal (Pichora-Fuller and Singh 2006). In line with this claim, a previous study
observed increased alpha power during the retention of degraded speech items in
working memory (Obleser et al. 2012). In particular, Obleser et al. noted parametric
increases in alpha power both with the number of to-be-remembered items and
with the decline in acoustic signal quality, suggesting that cognitive load is increased
by task detrimental acoustic factors as well.

The primary goal of the present study was to explore the potential of temporal
cueing (Nobre 2001; Coull and Nobre 2008; Jaramillo and Zador 2011) to improve
working memory performance and concomitantly reduce alpha power. Temporal
expectations have been shown to enhance the precision of stimulus encoding
(Rohenkohl et al. 2012) as well as to improve behavioral performance (Coull and
Nobre 1998). Thus, we hypothesized that behaviorally, cueing participants to the
time of occurrence of a to-be-remembered speech item would improve working
memory performance (for a review see Gazzaley and Nobre 2012). Critically, we
expected that alpha power would be reduced when to-be-remembered items were
temporally cued, reflecting the potentially reduced demand for functional inhibition.

We devised an MEG experiment using an auditory delayed-matching-to-sample
task on speech in noise: Retaining a syllable in memory for two seconds introduced
memory load. A priori, we provided listeners with potentially facilitating visual cues
that contained probabilistic information about the duration of the foreperiod

preceding the syllable pair (Nobre 2001; Coull and Nobre 2008; Kaiser et al. 2009;
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Jaramillo and Zador 2011). The experiment addressed three specific questions: First,
do temporal expectations reduce cognitive load imposed by retention of a target
stimulus presented in noise, as reflected in a relative alpha power decrease? Second,
what are the underlying neural sources of alpha power modulations due to temporal
cueing? Third, if individuals differ in their ability to behaviorally profit from temporal
expectation, is individual alpha power during memory retention predictive of

individuals’ behavioral performance?

Material and Methods

Participants

Twenty healthy right-handed participants took part in this study. Data of two
participants were discarded from further analyses because more than 50% of their
trials were rejected due to artifacts. This led to the inclusion of data for eighteen
participants (9 females) ranging in age from 21 to 35. All participants had
self-reported normal hearing. Participants were fully debriefed about the nature and
goals of this study, and received financial compensation of 7 € per hour for their
participation. The study was approved of by the local ethics committee (University of
Leipzig), and written informed consent was obtained from all participants prior to

testing.

Experimental task and stimuli
The time course of an example trial is depicted in Figure 1A. Each trial began with
the simultaneous onset of speech-shaped noise and a fixation cross. The noise lasted

throughout the entire trial. A visual cue was presented approximately one second
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after noise onset (jittered between 750 ms to 1250 ms). Cues were presented for
1500 ms, and indicated the approximate onset time of S1. The onset time of S1 was
measured from the offset time of the cue. Participants had to retain S1 in memory
during a two-second retention period following S1-offset. Then, a second syllable, S2,
was presented, and participants judged whether S2 had the same or different initial
consonant as S1. Approximately one second (jittered between 900 ms to 1100 ms)
after the presentation of S2, participants were prompted to give a response via
button press. Finally, participants indicated their confidence in their
“same”/”different” response on a 3-level confidence scale (“not at all confident”: 1,
“somewhat confident”: 2, “very confident”: 3). Trials were separated by an inter-trial
interval of approximately one second that was free of stimulation or responses.

Three types of cues were presented: “early”, “late”, and “neutral”. Early and late
cues were specific, meaning that cues provided meaningful information about when
S1 would occur following cue offset. S1-onset times for early and late cues were
randomly drawn from Gaussian distributions (early: u=850ms, o = 85 ms; late:
p=1300ms, o =130 ms). On the other hand, neutral cues were unspecific, and
S1-onset times were randomly drawn from a uniform distribution ranging between
700 ms and 1500 ms (see Figure 1B).

S1 and S2 stimuli consisted of four different syllables: “da”, “de”, “ga”, and “ge”.
Syllables were edited from full words beginning with the respective syllable. Two
different words and two recordings per word were used to create a pool of four
naturally varying tokens for each syllable (e.g., Obleser et al. 2003). Speech stimuli
were recorded by a trained female speaker of German in a sound proof chamber.

Recordings were digitized at 44100 Hz. All syllables were edited to be of 200 ms final
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length, including 3-ms onset and 30-ms offset ramps. Sound files were peak
normalized to equal decibel full scale amplitude.

Speech-shaped noise was generated by filtering white noise to approximate the
long-term average spectrum of speech (e.g., Peters et al. 1998). Power per frequency
band from a concatenated set of 60 German nouns (female speaker) served as input
for the filter, which was subsequently applied to white noise. This resulted in noise
with an approximately speech-shaped spectral envelope and an approximately flat

amplitude envelope (i.e., a non-fluctuating noise masker).

Procedure

Prior to the MEG measurement, participants completed three blocks of an adaptive
tracking procedure in order to estimate individual signal-to-noise ratios (SNR)
yielding 70.7 % correct responses (i.e., two-down-one-up; Levitt 1971). Participants
performed the same task as they did in the experiment proper, with the exception
that no cues to the timing of S1 onset were provided. The intensity of the noise was
kept constant at 50-dB sensation level, and the relative intensity of the syllables was
adjusted in 1-dB steps. Each block terminated after 12 reversals. Thresholds were
taken as the arithmetic average of the final 8 reversals in each block, and additionally
averaged across blocks.

Next, brain activity was recorded with MEG during the performance of 360 trials
completed in 18 blocks of 20 trials each. Cue type (early, late, neutral) was constant
within a block, and participants were informed at the start of each block about the
type of temporal cue they would receive on each trial. The order of trials within a

block and order of blocks were randomized for each participant. Button assignments
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were counterbalanced across participants, such that half of the participants
indicated that S1 and S2 started with the same consonant using the left button, and
half did so with the right button.

The testing took approximately 2.5 hours per subject and was conducted within
one session. The overall session including adaptive tracking and preparation of the

MEG setup took about 3.5 hours.

Data recording and analysis

Participants were seated in an electromagnetically shielded room (Vacuumschmelze,
Hanau, Germany). Magnetic fields were recorded using a 306-sensor Neuromag
Vectorview MEG (Elekta, Helsinki, Finland) with 204 orthogonal planar gradiometers
and 102 magnetometers at 102 locations. Two electrode pairs recorded a bipolar
electrooculogram (EOG) for horizontal and vertical eye movements. The participants’
head positions were monitored during the measurement by five head position
indicator (HPI) coils. Signals were sampled at a rate of 1000 Hz with a bandwidth
ranging from direct current (DC) to 330 Hz.

The signal space separation method was applied offline to suppress external
interferences in the data and to transform individual data to a default head position
that allows statistical analyses across participants in sensor space (Taulu et al. 2004).

Subsequent data analyses were carried out with Matlab (The MathWorks Inc.,
Massachusetts, USA) and the FieldTrip toolbox (Oostenveld et al. 2011) using only
trials to which correct responses were provided (“correct trials”). Analyses were
conducted using only the 204 gradiometer sensors, as they are most sensitive to

magnetic fields originating directly underneath the sensor (Hamaldinen et al. 1993).
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The continuous data were filtered offline with a 0.5-Hz high pass filter, specifically
designed to provide a strong suppression of DC signals in the data (>140 dB at DC,
3493 points, Hamming window; e.g., Ruhnau et al. 2012).

Subsequently, trial epochs ranging from —1 to 3 s time-locked to the onset of S1
were extracted. Additionally, 4-s epochs were extracted from -2.25s to 1.75s
time-locked to noise onset providing the baseline window (-1.0s to —-0.25s) for a
remote baseline correction of the time—frequency data. These rather long epochs
were extracted to circumvent windowing artifacts in the time—frequency analysis;
the intervals analyzed statistically were shorter (see below). Trial and baseline data
were low-pass filtered at 150 Hz and subsequently down-sampled to 500 Hz. Epochs
were rejected when the signal range within one epoch exceeded 200 pT/m
(gradiometer) or 100 uV (EOG). Additionally, trials for which variance was deemed
high relative to all others (per participant, per condition) based on visual inspection

were rejected manually.

Time—frequency representation (TFR)
Time—frequency representations (TFRs) were calculated for each trial and 4-s
baseline epoch (with 20-ms time resolution) for frequencies ranging between 2 Hz to
30 Hz (logarithmically spaced, in 15 bins). Time-domain data were convolved with a
Hann taper, with an adaptive width of four cycles per frequency (At=4/f). An
event-free 750-ms interval ranging between -1 to -0.25 s prior to noise onset (i.e.,
during the inter-trial interval) was used as baseline period.

For each participant, single-trial relative power changes were calculated with

respect to mean baseline power (averaged over trials and time; separately for each

10

Page 10 of 38



Page 11 of 38

O©oOoONOOPAWN =

Cerebral Cortex

condition, sensor, and time—frequency bin). Note that no statistical differences were
found between baselines of the different conditions. Power estimates for each trial
were baseline-corrected by subtracting and dividing by average baseline power. The
average baseline provides a possibility to adjust for block-specific differences.
Therefore, we accept that this baseline does not account for between-trial variance.
Thus, the condition-specific baseline correction reflects changes in alpha power
during stimulation in contrast to no stimulation and might contain between-trial

differences.

Statistical analysis

Behavioral responses (i.e., proportion correct, PC; and response times, RTs) were
analyzed with a one-way repeated-measures ANOVA followed by paired-samples
t-tests to resolve differences between individual cueing conditions (early-cued,
late-cued, and neutral).

Statistical analyses of the time-frequency data comprised a multi-level approach
on alpha power data (Obleser et al. 2012, van Dijk et al. 2010): On the first (single-
subject) level, specific contrasts were conducted using single-trial data to test for
alpha power differences (8—13 Hz) between cueing conditions. Contrasts of all single
conditions (neutral vs. late-cued, neutral vs. early-cued, early-cued vs. late-cued)
were performed within the framework of Fieldtrip’s independent sample t-tests. The
contrast of the cued (early-cued and late-cued combined) and neutral conditions was
conducted using the Fieldtrip-implemented independent-samples regression t-test
with contrast coefficients neutral = 2, early-cued = -1, late-cued = —1. Beta values for

all contrasts were obtained for each time—frequency bin at each of the 102 sensor

11
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positions. Next, beta-values were averaged across 8-13 Hz to derive an aggregated
alpha-frequency estimate for each time point and sensor. Time points from -0.5 s to
2.5 s relative to S1 onset and each sensor were included in the analyses. For the
statistical analyses on the second (group) level, beta-values resulting from the
single-subject first level statistics were tested against zero with cluster-based
permutation tests (dependent samples t-tests, 1000 iterations; Maris and
Oostenveld 2007).

The cluster approach protects against inflated type-1 error due to multiple
comparisons. A second-level t-statistic was calculated for beta-values (derived from
alpha power first-level analysis, see above) for each time—sensor bin. Then, clusters
were formed based on combining adjacent time-sensor bins with t-values exceeding
a threshold of p<0.05. Within each cluster, t-values were summed. Using a

permutation-based approach, time—sensor values were randomly assigned to two

“conditions” without regard for their true condition labels on each of 1000 iterations.

On each iteration, clusters were again formed based on combining neighboring bins
with statistically significant t-values, and the t-value from the cluster with the largest
summed statistic was added to a permutation distribution. Finally, any clusters with
t-values exceeding 95% of those from the permutation distribution were considered
statistically significant. All cluster tests were two-tailed and were thus considered
significant when p < 0.025.

We also tested for correlations of alpha power with an in-depth measure of
behavioral performance. Confidence ratings served to construct receiver operating
characteristic (ROC) curves (Macmillan and Creelman 2005) for each condition that

were used to derive A,, a non-parametric performance measure corresponding to

12
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the area under the ROC curve (see Fig. 4A). Based on our analyses on alpha power
and A,, differences between the late-cued and neutral conditions were the largest
(see below). In order to test how the dynamic ranges of A, and of alpha power are
related to each other in individual participants, the difference A, neutrai— A;_Late Was
correlated with the difference alphaneutral — alphaiate. We used the permutation-
cluster approach across time points and sensors to identify clusters of significant

alpha power—behavior correlation.

Source localization
On the basis of individual T1-weighted MRI images (3T Magnetom Trio, Siemens AG,
Germany), topographical representations of the cortical surface of each hemisphere

were constructed with Freesurfer (http://surfer.nmr.mgh.harvard.edu/).

The MR coordinate system was co-registered with the MEG coordinate system
using the HPIs and about 100 additional digitized points on the head surface
(Polhemus FASTRAK 3D digitizer). For forward and inverse calculations, boundary
element models were computed for each participant using the inner skull surface as
volume conductor (using the MNE toolbox;

http://www.nmr.mgh.harvard.edu/martinos/userinfo/data/index.php). Individual

mid-gray matter surfaces were used as source model by reducing the approximately
150,000 vertices needed to describe single hemispheres to 10,242 vertices.

The FieldTrip-implemented beamformer approach (DICS, dynamic imaging of
coherent sources; (Gross et al. 2001) was used to project alpha power during the
retention of S1 (1.25-2.0 s after S1 onset) to source space, employing the

cross-spectral density (CSD) across sensors. The CSD was calculated based on results

13
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of the sensor-space analysis: Using a multitaper FFT (Fast Fourier Transform) applied
to single trials, we focused on the alpha frequency band (8—13 Hz). The multitaper
FFT was centered at 10.5 Hz (x 2.5 Hz smoothing with three Slepian tapers; Percival
and Walden 1993) and a complex common filter (all conditions and baseline) was
calculated (Gross et al. 2001; Schoffelen et al. 2008). Data were then projected
through the filter, separately for each retention condition and each
condition-specific baseline interval. Then, projections of relative power change per
condition averaged over trials were attained (comparable to baseline correction in
sensor space). For visualization, the relative power source projection of each
condition was morphed onto a common surface (Freesurfer average brain; Fischl et
al. 1999).

To illustrate condition effects observed in sensor-space at the source level, we
contrasted all source-projected conditions against each other by means of vertex-
wise t-tests (neutral vs. late-cued, neutral vs. early-cued, early vs. late-cued). The
resulting t-values were z-transformed and displayed on the average brain surface.
Given that the goal of source reconstruction was to localize the neural generators of
sensor-space effects previously identified as significant, z-value maps were displayed
with an uncorrected vertex-wise threshold of |z| 2 2.5 (Sohoglu et al. 2012).

Additionally, for each condition we extracted source-projected alpha power
(baseline-corrected) from the vertices yielding a |z| 2 2.5 (resulting from the neutral
greater than late-cued contrast) within the right insula cluster, where z-values
showed the greatest condition effects (see more on the insula below). Extracted

activity was then averaged across vertices for each condition separately and used for

14
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visualization. A repeated measures ANOVA was conducted across the averaged

activity in order to reveal condition differences in this exact area.

Results

Effects of temporal cueing on behavioral performance

The participants’ task was to retain syllable S1 in memory for two seconds and then
to decide, after the offset of S2, whether S1 and S2 had the same syllable-initial
consonant.

A one-way repeated-measures ANOVA on proportion correct (Fig. 1B) indicated
that performance depended on cueing (F(2,34)=4.15, p=0.024). Participants
responded more accurately in the late-cued condition compared to the neutral
condition (t(17) =2.53, p =0.009). Participants benefited less robustly from early
cues, as this condition did not differ significantly from the late-cued (t(17) =-1.49,
p = 0.155) or the neutral condition (t(17) = -1.44, p = 0.169).

A repeated-measures ANOVA on response times (measured relative to a
response prompt that occurred one second after S2 offset) revealed a main effect of
condition (F(2,34) =7.30, p = 0.035). Post-hoc paired-samples t-tests revealed that
responses to late-cued trials were significantly faster than to neutral trials (neutral vs.
late: t(17) = 2.58, p = 0.019. Similar to the accuracy results, there were no significant
differences between RTs for early-cued and late-cued conditions (t(17)= 0.50,

p = 0.622) or the early and neutral conditions (t(17) = 1.95, p = 0.0678; Fig. 1B).

Effects of temporal cueing on alpha power changes

15
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As predicted, alpha power increased across the entire trial in all three conditions,
relative to baseline (see Figure 2A). We compared the post-baseline interval (-0.5 to
2.5 s after S1-onset) and the baseline interval (-1.0 to —0.25 s prior to noise onset),
both averaged across time—sensor bins in the alpha range, with t-tests. Each
condition in the post-baseline interval presented a significant increased compared to
the baseline interval in the alpha range (all p < 0.05).

Statistical contrasts between conditions revealed a strong difference in alpha
power between neutral and late-cued trials. Two significant clusters (1. p = 0.010, —
0.42t00.985s; 2. p=0.018, 1.4 to 2.5 s) during S1 and S2 encoding, as well as during
retention of S1 indicated that alpha power was reduced in late-cued trials relative to
neutral trials (see Figure 2B, upper panel).

Alpha power in the early-cued condition did not differ significantly from the
neutral condition. Moreover, no significant clusters obtained for the contrast
between the cued and neutral conditions. However, in an early time window around
syllable S1, early-cued trials exhibited larger alpha power than late-cued trials in a
right-frontal positive cluster (p = 0.033; —0.42 to 0.32 s; Fig. 2B, lower panel).

In sum, late-cued trials showed reduced alpha power compared to neutral and
early-cued trials. The late cue was thus most effective in providing temporal

expectations that yielded the hypothesized alpha power decrease.

Source localization of alpha power changes
We tested whether the alpha-power source projections (see Methods) presented
less activity in the late-cued condition than in the neutral condition (Fig. 3), to

confirm results from sensor space (Medendorp et al. 2007; Haegens et al. 2010;

16
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Obleser et al. 2012). Source space results corroborated the findings in sensor space:
Late-cued trials led to a reduction of alpha power compared to early-cued and
neutral trials. Locations of the alpha power reduction in the late-cued condition were
strongly overlapping. In general, the alpha power differences (z > 2.5) were found in
the right hemisphere emerging from the right anterior insular cortex [peak activity at
MNI: 28; 23; -6]. A repeated measures ANOVA (F(2,34) = 7.70, p = 0.006) on the
condition-wise averaged alpha power projection in the insula showed that late-cued
trials present significantly less activity than neutral trials (t(17)= -4.21, p = 0.002),
whereas this reduction in late-cued trials compared to early-cued trials is only
significant on trend level (t(17)=- 2.09, p = 0.078). Activity in early-cued and neutral
trials does not differ at all (t(17)=- 1.57, p = 0.135; Fig, 3A). Figure 3A depicts the
source-projected alpha power in the insula for each condition. Condition-specific
power values show the same pattern as our sensor-space analysis, thereby

confirming the right insula as the main source of our alpha effects.

Alpha power reduction during memory retention predicts behavioral performance

In a final analysis, we aimed to relate the observed modulation of behavioral
performance by temporal cueing to the alpha power differences between cue
conditions. Specifically, we contrasted the two conditions for which we observed the
largest difference in both behavior and alpha power (i.e., the neutral and late-cued
conditions). We asked whether the degree to which alpha power was decreased by
temporal cueing (indexed by alphaneutrai— alphaiate) Would predict the degree to

which participants were able to profit from the temporal cue (A; neutral = A;_tate)-

17
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This analysis focused on the performance measure A,, a nonparametric measure

derived from the receiver operating characteristics (ROC) curve (see Methods and Fig.

4A) which can be interpreted similarly to proportion correct (Fig. 4B). In brief, recall
that confidence ratings were collected for “same”/”different” responses on each
trial, and these were used to construct ROC curves. Then, ROC curves were tested
for asymmetry around the minor diagonal (Henry and McAuley 2013). Linear fits to
z-transformed ROCs (zROCs) yielded a slope estimate for each participant. Separately
for each condition, zROC slopes were then tested against unity (slope = 1) using a
single-sample t-test. Significant deviations from unit slope (as was the case here;
all .07 > p > .01) indicate asymmetric ROC curves and non-independence of
perceptual sensitivity and response bias in parametric performance measures (e.g.,
PC, d’). Thus, nonparametric performance measures derived from the ROCs
themselves, like A,, are considered more accurate performance measures.

Next, we calculated an “alpha-power modulation index” that reflects the
difference for each participant between alpha power in the neutral and late-cued
conditions (i.e., alphaneutral — alphaiate), and correlated these values with a
“behavioral-performance modulation index” calculated for the same two conditions
(A; Neutral = A; Late). We then correlated these values for individual time—sensor bins,
again using a cluster-based approach. This revealed a broad positive fronto-central
cluster (0.08-2.7 s, p =0.007) ranging across the entire retention phase including
encoding of S1 and S2.

The correlation of the alpha power differences extracted from this cluster and

the behavioral differences (r = 0.51) are shown in Figure 4C.

18
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Discussion

The present study investigated whether temporal cues improved behavioral
performance and decreased alpha power in a delayed-matching-to-sample
working-memory task, where to-be-remembered syllables were embedded in
masking noise. We observed that knowing when to listen facilitated retention of a
syllable in ongoing noise, as indexed by higher accuracy and faster response times in
the late-cued compared to the neutral condition. This finding is in line with previous
research indicating that temporal cues and long foreperiods lead to better stimulus
encoding (Correa et al. 2005; Rohenkohl et al. 2012) and behavioral performance
(Coull and Nobre 1998). Moreover, we observed that, along with the overall increase
of alpha power in all conditions, temporal cues (in particular when coupled with a
relatively long foreperiod) caused a reduction of the magnitude of this alpha power
increase, suggesting that knowing when to listen also decreased the necessity to
functionally inhibit task-irrelevant information. In particular, largest differences in
alpha power between temporal cueing conditions were observed in the right insula.
Overall, the reduction of alpha power as well as the increase of behavioral
performance implies that temporal expectations (i.e., late-cued condition) are able
to reduce the cognitive load elicited by stimuli presented in noise (see, Zanto and
Gazzaley 2009).

In the following sections we will put the current findings in context, in
particular emphasizing how the facilitatory effects of temporal cues might be
realized neurally in terms of alpha power modulations. The discussion will be
structured in three parts: (1) How do temporal expectations affect alpha power and

cognitive load?; (2) What are the underlying neural sources of alpha-power
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modulations?; (3) How do alpha-power modulations predict modulations of

behavioral performance?.

How does temporal expectation affect alpha power and cognitive load?

Temporal expectations in the current study led to a decrease of alpha power during
syllable retention, relative to when the onset of the syllable pair could not be
expected even though stimulation (syllables, noise, and SNR) were identical across
conditions. In particular, we observed the largest differences in terms of both
behavior and alpha-power effects when we contrasted the late-cued with the
neutral conditions. That is, although early and late cues both provided information
about the onset time of the syllable, the late-cued condition was more effective in
reducing alpha power than the early-cued condition (see also the behavioral results
in Fig 2B). This effect of foreperiod duration corresponds to previous behavioral
results showing that longer foreperiod durations lead to increased encoding
precision (Correa et al. 2005) and better stimulus detection (Niemi and Naitdnen
1981).

We interpret reduced alpha power for the late-cued relative to the neutral
condition to mean that temporal expectations reduced the need for functional
inhibition. The reason is that, in all temporal cueing conditions (early-cued, late-cued,
neutral), alpha power was generally increased relative to baseline. Thus, we suggest
that alpha power played an inhibiting role in the speech-in-noise working-memory
task regardless of temporal cueing condition. For the late-cued condition, alpha
power increased less relative to baseline than in the neutral condition, suggesting

that alpha power still played an inhibiting role, albeit a less strong one. In particular,

20

Page 20 of 38



Page 21 of 38

O©oOoONOOPAWN =

Cerebral Cortex

we suggest that more specific temporal expectations may have allowed for an a
priori suppression of irrelevant, potentially interfering information. Concomitantly,
less functional inhibition was needed, which was reflected in reduced alpha power.

Along these lines, previous studies have shown that knowing when to listen
enhances stimulus encoding (e.g., Posner 1980; Correa et al. 2005; Rohenkohl et al.
2012; Vangkilde et al. 2012; Cravo et al. 2013). We suggest that improved encoding
could have been allowed for by the stronger suppression of irrelevant information
(e.g., Hillyard et al. 1998) in the late-cued relative to the neutral condition. Moreover,
less degraded stimuli elicit less cognitive load and less alpha power during
maintenance in working memory (Obleser et al. 2012), suggesting that the beneficial
effects of temporal expectations cascaded into the retention interval in the current
study, thereby triggering the observed alpha effects.

It is worth pointing out that alpha power rather serves as an indirect measure
not reflecting active maintenance but functional inhibition of irrelevant information
(termed working memory “protection”, Roux and Uhlhaas 2013), whereas stimulus
maintenance in memory per se has previously been associated with gamma
oscillations (> 30 Hz; e.g., Howard et al. 2003; Jensen et al. 2007; Lisman and Jensen
2013; Roux et al. 2013). Essentially, alpha and gamma are inversely related: brain
areas presenting high alpha power are inhibited and present low gamma power
because active processing is suppressed, and vice-versa (Jokisch and Jensen 2007
see for review Klimesch et al. 2007; Jensen and Mazaheri 2010).

So far we have only discussed less alpha power as reflecting less functional
inhibition. However, an alternative (although not mutually exclusive) explanation is

that reduced alpha power associated with temporal expectations has been
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interpreted to reflect increased cortical excitability (e.g., Jensen et al. 2012; Lange et
al. 2013). The association between reduced alpha and increased excitability comes
specifically from studies involving focusing attention either spatially (Weisz et al.
2013; Whitmarsh et al. 2013) or temporally (Rohenkohl et al., 2012), where focused
attention also results in improved task performance. With our design, it is not
possible to completely disentangle whether reduced alpha power reflects reduced
functional inhibition or enhanced cortical excitability. However, our overall alpha

effects reflect synchronization (i.e., a power increase compared to baseline; Klimesch

et al., 2012) rather than desynchronization (i.e., power decrease relative to baseline).

Moreover, our primary effect localized not to sensory/domain-specific, but rather to
domain-general cortex (i.e., the insula, see below). Thus, we suggest that the
functional inhibition framework and a relative decrease in the need for such
functional inhibition offer the more parsimonious explanation for our observed
alpha effects. More generally, the current results fit within the context of an
extensive literature relating alpha oscillations to attention and working memory.
Studies manipulating selective attention (for a review see Foxe and Snyder 2011),
along with studies using comparable delayed-matching-to-sample tasks in the
somatosensory (e.g., Haegens et al. 2010; Haegens et al. 2011) and in the auditory
domain (Kaiser et al. 2007), imply that increased alpha power effectively inhibits

interference from other processes and/or brain sites.

What are the underlying neural sources of alpha power modulations?
Source analyses of alpha power revealed that effects between conditions were

confined mainly to the right insular cortex (see Figure 3). We suggest that
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lateralization to the right-hemisphere generally reflects inhibition of the hemisphere
that is arguably task-irrelevant when it comes to retaining verbal material (i.e.,
syllables) in working memory (e.g., Smith and Jonides 1998). Previous research
supports this proposition. Specifically, right-hemispheric alpha power effects were
observed in another working memory study making use of syllable material (Leiberg
et al. 2006; see also results by Obleser et al. 2012). Although the authors interpreted
their alpha effects as reflecting executive processes operating on verbal material,
(van Dijk et al. 2010) re-interpreted the findings of Leiberg and colleagues as
meaning that alpha power was inhibiting the right hemisphere, which (similar to the
current study) was task-irrelevant during syllable retention. Conversely, van Dijk et al.
(2010) made use of a non-verbal, pitch memory task, and found increased alpha
power in the left hemisphere. The authors argued that enhanced alpha power
reflected a functional inhibition of the hemisphere that was again task-irrelevant,
this time during retention of pitch information. Finally, during a working memory
task in the somatosensory domain, Haegens et al. (2010) showed that alpha power
increased at sensors ipsilateral to the side of stimulation (i.e., the task-irrelevant
hemisphere).

With respect to localization to the insula more specifically (Figure 4) several
previous fMRI studies have shown that the processing of degraded speech (not
unlike the present stimulus setup) is accompanied by increased insular activity
reflecting the difficulty of comprehension (Vaden Jr et al. 2013; Erb et al. 2013).
Converging evdience for increased insula activity in a difficult listening situation
comes from an fMRI study of Sadaghiani et al. (2009), who found that increased

pre-stimulus BOLD activity in the insula was associated with enhanced detection of
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near-threshold auditory stimuli in a sustained attention task. According to
Sadaghiani et al., activity in the insula is a marker of fluctuations of sustained
attention. Dosenbach et al. (2007) and Eckert et al. (2009) more genrally see that the
anterior insula not only enhances sustained attention but, is part of a network which
is responsible for sustained task-related cognitive control.

We would like to suggest that the insula plays an active role in functional
inhibition, in line with the localization of our alpha effects to this region. A recent
fMRI study from our group found upregulation of insula activity associated not only
with selective attention to task-relevant information, but also with selective ignoring
of task-irrelevant (Henry et al. 2013). Work using combined EEG/fMRI has typically
shown a negative relation between BOLD signal and alpha power in much of cort