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1. Introduction

In multi-talker situations, hearing-aid users find it difficult 
to comprehend the attended conversational partner against 
background noise (i.e. cocktail party problem, Cherry 1953). 
Part of this problem might be due to the fact that the hearing 

aid is lacking the explicit information which sound source 
the listener wants to listen to. The investigation of neural 
speech-tracking (for a methods review, see Wöstmann et  al 
2016) using Electroencephalography (EEG) and identification 
of the attended speaker in multi-talker scenarios from multi-
channel scalp-EEG (Mirkovic et  al 2015, O’Sullivan et  al 
2015) has demonstrated that EEG could feasibly inform future 
hearing aid algorithms about a listener’s focus of attention. 
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Abstract
Objective. Conventional, multi-channel scalp electroencephalography (EEG) allows the 
identification of the attended speaker in concurrent-listening (‘cocktail party’) scenarios. This 
implies that EEG might provide valuable information to complement hearing aids with some 
form of EEG and to install a level of neuro-feedback. Approach. To investigate whether a 
listener’s attentional focus can be detected from single-channel hearing-aid-compatible EEG 
configurations, we recorded EEG from three electrodes inside the ear canal (‘in-Ear-EEG’) 
and additionally from 64 electrodes on the scalp. In two different, concurrent listening tasks, 
participants (n  =  7) were fitted with individualized in-Ear-EEG pieces and were either asked to 
attend to one of two dichotically-presented, concurrent tone streams or to one of two diotically-
presented, concurrent audiobooks. A forward encoding model was trained to predict the 
EEG response at single EEG channels. Main results. Each individual participants’ attentional 
focus could be detected from single-channel EEG response recorded from short-distance 
configurations consisting only of a single in-Ear-EEG electrode and an adjacent scalp-EEG 
electrode. The differences in neural responses to attended and ignored stimuli were consistent 
in morphology (i.e. polarity and latency of components) across subjects. Significance. In 
sum, our findings show that the EEG response from a single-channel, hearing-aid-compatible 
configuration provides valuable information to identify a listener’s focus of attention.
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Information about the focus of attention would allow hearing 
aids for example to adapt noise suppression algorithms or to 
align directional microphones to the attended sound source 
(Mirkovic et al 2016, Van Eyndhoven et al 2016).

The implementation of EEG into comparably small hearing 
aids allows the attachment of only few electrodes at restricted 
positions inside the ear canal (Bleichner et al 2015, Mikkelsen 
et al 2015) or around the ear (Debener et al 2015, Mirkovic 
et al 2016). Since EEG responses quantify the potential dif-
ference between a signal electrode and a reference potential, 
at least two electrodes are required to measure the EEG. The 
position and distance as well as the orientation of the two 
electrodes mainly determines, in how far relevant and irrel-
evant electrophysiological and external sources will be cap-
tured, respectively. Due to the limited number of channels 
in such a hearing-aid-compatible configuration, established 
offline methods of EEG-signal enhancement such as inde-
pendent component analysis relying on covariance of mul-
tiple, whole scalp covering electrodes (Makeig et al 2004) are 
not applicable.

An established method to extract auditory evoked poten-
tials (AEP) is based on multiple time-locked presentations of 
identical stimuli and the subsequent averaging of the meas-
ured EEG time-domain signal (Rockstroh et al 1982). Using 
this method, it has been shown that the AEP can be extracted 
from the potential difference between in-Ear-EEG electrodes 
and adjacent scalp-EEG electrodes (Bleichner et  al 2015, 
Mikkelsen et al 2015, Fiedler et al 2016). For the presenta-
tion of continuous, non-repeating speech, averaging across 
multiple trials is not applicable (for review see Wöstmann 
et al 2016). Thus, a method to estimate a response evoked by 
continuous speech is needed. Importantly, the quasi-rhythmic 
fluctuations of the speech signal’s broad-band temporal enve-
lope have recently been reconstructed successfully from 
Magnetoencephalography (MEG) (Ding and Simon 2012) 
and EEG (Mirkovic et al 2015, O’Sullivan et al 2015) using 
linear models. Despite some remaining ambiguities as to the 
signal features that do get actually encoded in the neuro-cor-
tical signal (see e.g. Ding and Simon 2014), a main finding 
here is that the attended-speaker signal attains a dominant rep-
resentation in the measured neural signal.

In sum, recent scalp-EEG research has established the 
feasibility to infer on a listener’s attentional focus from EEG 
very generally. In this present study, however, the overriding 
goal is to examine single-channel in-Ear-EEG configurations 
that possibly could be part of a hearing aid. To this end, we 
focus our analyses on single-channel electrode configura-
tions consisting of an in-Ear-EEG and a scalp-EEG electrode 
close to the ear only, to allow future smooth integration with 
extant hearing-aid systems (Lunner and Gustafsson 2012). 
We employ estimation of a forward (i.e. encoding) model 
since we focused on the encoding of onsets in the broad-band 
temporal envelope and the prediction of the to-be-expected 
EEG-signal at single EEG channels. Furthermore, we avoided 
any methods of artefact rejection such as independent comp-
onent analysis or trial rejection. This approach allows us to 
presume that the same results could have been achieved by 
solitarily recording the respective channel by attaching only 
two electrodes.

The resulting data from two challenging, cocktail-party-
like listening paradigms demonstrate that, on the single-
participant level, we are able to accurately infer a listener’s 
attentional focus from a single-channel EEG setup consisting 
of electrodes in and around the ear.

2. Methods

2.1. Participants

Eight subjects were enrolled in the study (aged 23, 25, 28, 
29, 39, 41, 43 and 49; 4 males). Each participant was pro-
vided with individually fitted ear molds. Each ear mold was 
equipped with three in-Ear-EEG electrodes (Fiedler et  al 
2016).

Five of the subjects were native Danish speakers, while 
two were French and one was a German native speaker. All 
reported normal hearing and no histories of neurological dis-
orders. Participants gave informed consent. Procedures were 
in accordance with the Declaration of Helsinki and approved 
by the local ethics committee of the University of Leipzig 
Medical faculty. All subjects participated in the oddball task, 
while only the five native Danish speakers participated in the 
audiobooks task (aged 29, 39, 41, 43 and 49, 3 males). For 
both tasks, the recording from one of the Danish subjects had 
to be discarded due to invalid in-Ear-EEG data, as the device 
did not remain in place during recordings.

Note that the comparably low number of subjects is due 
to the fact that the in-Ear-EEG devices are in a prototype sta-
dium and can’t be manufactured in high quantities. However, 
all results presented are based on rigorous levels of statistical 
significance in the single subject.

2.2. Stimuli and tasks

We implemented two experimental paradigms in order to 
investigate whether neural responses for two concurrent audi-
tory streams can be extracted from in-Ear-EEG and whether 
such responses can predict which out of two streams is being 
attended.

First, we implemented a non-speech, two-stream, dichotic 
tone paradigm, in close analogy to Lakatos et al (2012), here-
after called oddball task. Two dichotically presented (i.e. left 
versus right ear) concurrent streams of 100 ms tones (with 
a sawtooth carrier waveform) were presented for 1 min. On 
each trial, the two streams differed in tone repetition rate 
(1.4 versus 1.8 Hz) and pitch (410 versus 610 Hz). 10–15% 
of the tones occurred as oddballs (1/4 tone pitch deviation) 
in both streams. Participants were asked to either attend to 
the stream presented on the left or right ear and to press a 
button with their right hand as soon as they heard an oddball 
in the attended stream. In total, 40 trials of 1 min length were 
presented (figure 1(A)). All stimulus manipulations, repeti-
tion rate (1.4 versus 1.8 Hz), pitch (410 versus 610 Hz), and 
attention (left versus right) were counterbalanced across 
trials.

The second paradigm was a two-stream, continuous-speech 
paradigm, hereafter called audiobooks task. Emulating typ-
ical challenging listening scenarios, we presented a mixture 
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of two concurrent audiobooks to both ears (i.e. diotic pres-
entation without any spatial cues; figure  1(A)). The stimuli 
were two different Danish works of fiction spoken by a female 
(Marryatt, Children of the forest) and a male speaker (Poe, A 
Descent into the Maelström), with matched long-term root-
mean-squared (rms) sound intensity. Each exemplar of 1 min 
mixtures was presented twice in succession. Counterbalanced 
across trials, subjects were asked to either attend to the male 
voice first and second to the female voice or vice versa. In 
total, 60 trials of such 1 min mixtures were presented.

2.3. EEG-data acquisition and preprocessing

Sixty-four-channel scalp-EEG was recorded alongside in-
Ear-EEG using a BioSemi ActiveTwo amplifier (Biosemi, 
Netherlands). In-Ear-EEG electrodes were connected to the aux-
iliary inputs of the ActiveTwo amplifier via pre-amplifiers iden-
tical to the ones used for scalp-EEG electrodes. EEG data were 
recorded with a sampling rate fs  =  2048 Hz. Please find more 
details about the recording procedure in Fiedler et al (2016).

Data were preprocessed using both the fieldtrip toolbox 
(Oostenveld et  al 2011) for Matlab (MathWorks, Inc.) and 
custom-written code. The continuous EEG data recorded 
during the oddball task were highpass-filtered at fc  =  1 Hz 
and lowpass-filtered at fc  =  15 Hz. The continuous EEG data 
recorded during the audiobooks task were highpass-filtered 
at fc  =  2 Hz and lowpass-filtered at fc  =  8 Hz according to 
O’Sullivan et al (2015). In order to compensate phase shifts, 
data were filtered both forward and backward using Hamming-
window FIR filters with orders N  =  3fs/fc. Subsequently, all 
data were downsampled to 125 Hz to match the sampling rate 
of the onset envelopes (see below).

After an initial inspection of the event-related potential 
(ERP) between in-Ear-EEG electrodes and Cz, we encounter ed 
the issue of not all in-Ear-EEG electrodes keeping proper 
conductance across the whole experiment. Thus, for each ear 
canal, only the electrode showing minimal standard deviation 
across trials in the ERP summed up between 0 and 500 ms 
relative to tone-onsets was selected for further analysis.

In order to evaluate the potential difference between in-
Ear-EEG electrodes and scalp-EEG electrodes, we created 
two datasets for each participant, one with all scalp-channels 
referenced to the priorly selected left in-Ear-EEG electrode 
and the other with all scalp-EEG channels referenced to the 
selected right in-Ear-EEG electrode.

2.4. Extraction of onset envelopes

Several approaches to extraction of the broad-band temporal 
envelope from a speech signal have been proposed (Biesmans 
et al 2016, Thwaites et al 2016). In case of the oddball task, 
the envelope was extracted by a direct calculation of the abso-
lute values of the Hilbert-transform. In case of broad-band 
speech signals, the Hilbert transform is only a rough approx-
imation and it has been shown that an intermediate step of 
extraction and subsequent summation of frequency sub-band 
envelopes increases the accuracy of detecting the attended 
speaker (Biesmans et al 2016). Thus, for the audiobooks task, 
we extracted the sub-band envelopes using NSL Toolbox (Ru 
2001) for Matlab (Mathworks, Inc.), which resulted in a rep-
resentation containing the envelopes of 128 frequency bands 
of uniform width on the logarithmic scale with center frequen-
cies logarithmically spaced between 0.1 and 4 kHz (24 bands 
per octave). In order to obtain the broad-band temporal 

Broad-band
temporal envelope

f

A

B

 Ignored Attended 
Ignored

C
Onset envelope

Oddball task Audiobooks task
Attended

Figure 1. Design and onset envelope extraction. (A) Exemplary stimulus waveforms show the spatial separation of target (green) and 
distractor (grey) stimuli in both tasks. In the oddball task, two streams of 100 ms tones differing in repetition rate and pitch were presented. 
Subjects were asked to attend to the left or the right stream and press a button as soon as they heard an oddball (pitch deviation) in the 
attended stream. In the audiobooks task, two Danish audiobooks spoken by a female and male speaker were presented. The identical 
mixture of both speakers was presented on both ears (diotic). Subjects were asked to attend either the female or the male voice. (B) In the 
oddball task, the broad-band temporal envelope was captured from the stimulus-waveforms directly. In order to capture the broad-band 
temporal envelope from the audiobooks, an auditory time-frequency representation was summed up across its spectral sub-bands. (C) The 
onset envelope was obtained by computing the first derivative of the broad-band temporal envelope and subsequently zeroing values smaller 
than zero (half-wave rectification).
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envelope, sub-band envelopes were summed up across fre-
quency (figure 1(B)).

Furthermore, it has been proposed to transform the broad-
band temporal envelope in order to extract salient increases 
of signal power (Hertrich et  al 2012, Hambrook and Tata 
2014). This method is based on the assumption that ear-
liest time points of sensation that could evoke responses are 
tone or syllable onsets, respectively. It can be calculated by 
zeroing negative values (halfwave rectification) of the first 
derivative of the broad-band temporal envelope and results 
in a pulse-train-like series of peaks. Most salient peaks occur 
both at tone or syllable onsets (figure 1(C)). This time-series 
will be called onset envelope. Recently, we have shown that 
the cross-correlation of the onset envelope and the EEG-
signal results in estimations of the neural response similar to 
conventional ERPs obtained by multi-trial averaging (Fiedler 
et al 2016).

2.5. Training EEG response models

A schematic illustration of the approach to identification of 
the attended speaker is provided in figure 2. In order to eval-
uate the performance in identification of the attended speaker 
at every single EEG channel, we first trained a model for each 

individual participant. The model is a linear mapping of the 
onset envelope onto the measured EEG signal.

We used a well-established form of regularized regres-
sion (i.e. ridge regression; Hoerl and Kennard 1970) to train 
our model, as ridge regression has been shown to be appli-
cable for predicting neurophysiological signals on the base of 
stimulus features (forward encoding model) (Lalor et al 2009, 
Santoro et al 2014) as well as reconstructing stimulus features 
from EEG signals (backward decoding model; Mirkovic et al 
(2015) and O’Sullivan et al 2015). A Matlab-toolbox (mTRF 
Toolbox) is provided by Lalor (https://sourceforge.net/pro-
jects/aespa). As established above, the EEG signal should be 
independently predicted for every single EEG channel, which 
is, due to the implementation, inherent of forward modelling 
(Crosse et al 2016).

In detail, a single-channel encoding model g is the linear 
mapping of the onset envelope s onto the EEG signal r, which 
can be expressed as a convolution operation

∑ τ τ= ∗ = − ⋅
τ

r t s g s t g ( )   [ (   ) ( )] (1)

where t for t  =  1, 2, …, L is the sample index of both of the 
onset envelopes and the EEG signal with length L and τ for 
τmin, τmin  +  1, …, τmax is the investigated sample-wise time 

Figure 2. Identification of the attended speaker from single-channel EEG exemplary for audiobooks task. Training: after extraction of 
the onset-envelope (A) and preprocessing of the EEG signal (C), a linear forward model (B) is estimated for each trial and each speaker 
by concatenated stimulus and EEG signal of all other trials. Testing: the convolution of the onset envelopes of speaker A and B (D) with 
the trained prediction models (E) predicts to be expected EEG signals �rA and �rB with the labels ‘Attend A’ and ‘Attend B’, respectively (F). 
(G) If the predicted EEG signal labeled true (i.e. corresponds to the trial instruction) yields higher Pearson-correlation coefficient with the 
measured EEG-signal than the predicted EEG signal labeled false (i.e. is contrary to trial instruction), the classification is correct.
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lag between s and r. We investigated time lags (between the 
envelope and the EEG signal) ranging from  −100 to 550 ms. 
In our design, we expect a difference in morphology of the 
response functions gatt and gign (figure 2(B)), which are models 
of the responses to the attended and the ignored stimulus onset 
envelopes satt and sign (figure 2(A)). Moreover, we assume that 
the responses ratt and rign sum up and some noise n interferes 
(Zion Golumbic et al 2013). Accordingly, we can express the 
measured EEG signal rEEG (figure 2(C)):

∑

∑

τ τ

τ τ

= − ⋅

+ − ⋅ + = + +

τ

τ

r t s t g

s t g n t r t r t n t

EEG att att

ign ign att ign

( )   [ (   ) ( )]

  [ (   ) ( )] ( )   ( ) ( ) ( )

 

(2)

Since our goal was to estimate a response model including gatt 
and gign that minimizes the mean-squared error of the subse-
quent predicted EEG response �rEEG, it can be obtained by the 
standard matrix operation in regularized regression,

( )λ= + −G S S mI S R,T T1 (3)

where S is an L-by-2T-matrix with its columns containing 
onset envelopes of both the attended satt and ignored sign stim-
ulus onset envelopes and their time-lagged replications. R is 
a column vector of length L containing the measured single 
channel EEG signal rEEG. The relative regularization param-
eter λ is first multiplied with m, the mean of the diagonal ele-
ments of STS (Biesmans et al 2016). Second, it is multiplied 
with the identity matrix I and added to the covariance-matrix 
STS. This regularization term λmI prevents overfitting (Crosse 
et al 2016), which appeared as high frequent artifacts in the 
to be estimated response models. The resulting matrix G con-
tains the time-lag-wise response weightings gatt and gign for 
both the attended and ignored stimulus onset envelopes.

After an initial inspection of the response models, we 
decided to choose λ  =  102. Please note that the greater λ is 
chosen, the more the term (STS  +  λmI) converges to a multiple 
of the identity matrix, and the influence of covariance vanishes. 
This would lead to the same results as cross-correlation, which 
was also shown to be feasible for extracting neural responses 
(Kong et al 2014, Fiedler et al 2016), but doesn’t account for 
potential confounds caused by auto-correlation in the unregu-
larized signal. Here we couldn’t observe a consistent benefit of 
regularization, because classification accuracy didn’t decrease 
by further increasing λ. However, in order to be consistent with 
the literature, we applied regression as stated above.

In line with former studies (Mirkovic et al 2015, O’Sullivan 
et al 2015), we decided to apply leave-one-out cross-valida-
tion. According to Biesmans et al (2016) we trained the pre-
diction models by concatenating both the stimuli and EEG 
signal of all but the to-be-tested trial, before feeding it into (3). 
Thus, we obtained a prediction model for every single trial.

2.6. Testing EEG response models: ident if i cation  
of the attended stream

In order to classify which of the streams a listener attended to, 
the former trial-wise trained models gatt and gign (figure 2(B)) 

were assembled to become two contrary prediction models 
(figure 2(E)). According to (1), the sum of the convolution of 
the onset envelopes sA and sB (figure 2(D)) and each response 
model (figure 2(E)) predicts an EEG signal, respectively. For 
both scenarios with the labels Attend A and Attend B, EEG 
signals �rA and �rB (figure 2(F)) were predicted:

( ) [ (   ) ( )] [ (   ) ( )]� ∑ ∑τ τ τ τ= − ⋅ + − ⋅
τ τ

r t s t g s t gA A Batt ign

 (5a)

( ) [ (   ) ( )] [ (   ) ( )]� ∑ ∑τ τ τ τ= − ⋅ + − ⋅
τ τ

r t s t g s t gB A Bign att

 (5b)
This operation can be expressed by matrix multiplication of 
the onset envelope matrix S and the response model matrix G:

� =R SG, (6)

where �R  is a column vector containing the predicted EEG 
signal �rA or �rB, respectively.

In order to estimate which of the predicted EEG signals 
(�rA versus �rB) is most likely representing the trial instruc-
tion (attend A versus attend B), we calculated the Pearson-
correlation coefficient of the predicted EEG signals (�rA and 
�rB) and the measured EEG signal rEEG, respectively (L  =  7500 
samples, figure 2(G)). The predicted EEG signal that matched 
the to-be-attended stream (A versus B) was labeled true, the 
other one was labeled false. The classification was consid-
ered correct if the predicted EEG signal labeled true yielded 
greater (i.e. more positive) correlation than the EEG signal 
labeled false.

2.7. Goodness of fit

As a measure for the goodness of fit, we will refer to the cor-
relation coefficient obtained from Pearson-correlation of the 
true prediction and the measured EEG signal. The greater this 
coefficient, the more of the measured EEG signal’s variability 
would be explained by the response model. Due to the fact 
that a convolution is a weighted sum and here the weights 
are the response models with positive or negative weights at 
certain time lags, the predicted EEG signals should have the 
same polarity as the measured EEG signal. Hence, the inspec-
tion of the correlation-coefficient’s magnitude (or square) 
wouldn’t be appropriate. Thus, a greater (i.e. more positive) 
correlation-coefficient indicates the true prediction.

2.8. Classi f i cation accuracy

By classification accuracy we will refer to the percentage of 
trials in which the predicted EEG signal labeled true yields 
higher correlation with the measured EEG-signal than the pre-
dicted EEG signal labeled false. For statistical analyses, both 
the correlation coefficients resulting from Pearson-correlation 
of the true and the false prediction with the measured EEG 
signal, respectively, were fisher-z-transformed and called ztrue 
and zfalse. Considering the number of trials and the binary 
nature of the decision between two alternatives Attend A or 
Attend B, a single-subject chance level was defined at a level 
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of significance α  =  0.05 based on a binominal distribution 
(O’Sullivan et al 2015, Mirkovic et al 2016). This resulted in 
thresholds of 65% for the oddball task (40 trials) and 61.67% 
for the audiobooks task (60 trials).

3. Results

The main goal of this study was to identify the attended 
stimulus stream based on responses at single-channel EEG 
configurations consisting of one in-Ear- and one scalp-EEG 
electrode. To this end, we trained forward encoding models 
in order to predict EEG signals containing the predicted 
responses to both the attended and the ignored stimulus 
stream. Two alternative EEG signals representing the sce-
narios Attend A and Attend B were predicted. The prediction 
corresponding to the to-be-attended stream was called true 
and the other one false. Goodness of fit was quantified by 
Pearson-correlation coefficient of the true predicted and the 
measured EEG signal. For further statistical analyses, this 
coefficient was Fisher-z-transformed and called ztrue, whereas 
its counterpart zfalse was equivalently computed by correla-
tion of the false prediction and the measured EEG signal. Our 
approach to classification relies on the assumption that the 
true prediction better fits the measured EEG signal and thus 
leads to more positive correlation coefficients than the false 
prediction. Based on that, the percentage of correctly classi-
fied trials will be referred to as classification accuracy. All 
plots but the topographic maps are showing data from the 
exemplary configuration of FT7 referenced to the left in-Ear-
EEG channel.

3.1. Response functions reveal consistent attention-related 
differences

Applying ridge regression to obtain a forward model is known 
to return response functions comparable to ERPs (Lalor et al 
2009, Fiedler et al 2016). Beyond that, ridge regression can 
be applied on data measured during the presentation of con-
tinuous stimuli such as speech. According to (5), the afore-
mentioned difference between the correlation coefficients ztrue 
and zfalse (see below) has to arise from differences between the 
response functions of the attended and ignored stimuli.

An inspection of the grand average response func-
tions averaged across subjects in the dichotic oddball task 
(figure 3(A)) indicated that we extracted components equiva-
lent to a P50-N100-P200 complex. The response functions 
(figure 3(A)) suggest an enhanced N100-equivalent comp-
onent in responses to attended tones, which can be confirmed 
by the consistent differences of the responses to attended 
and ignored tones (figure 3(C)). All subjects show a negative 
deflection in responses to attended tones at around 160 ms, 
while all but one of the subjects show a positive deflection 
in responses to attended tones at around 380 ms. The topog-
raphies of the differences at time lag of maximal deflections 
show a bilateral pattern.

In the audiobooks task, a clear P50-N100-P200-
equivalent complex could be found in the responses to the 
attended speaker (figure 3(B)). The responses to the ignored 
speaker show only weak magnitudes and suggest a sup-
pression of the responses to the ignored speaker. Compared 
to the oddball task, this is leading to a greater difference 
between the responses to the attended and the ignored 

Figure 3. Response functions. Response functions shown here were obtained from potential difference between left in-ear-EEG and 
FT7 electrode. (A) Grand average response functions to both attended and ignored tones in the oddball task. (B) Grand average response 
functions to both attended and ignored speaker in the audiobooks task. Figures (C) and (D) show single subject data of difference between 
response functions in the oddball task and in the audiobooks task, respectively. Topographies show grand average weightings at time lags of 
maximal difference between the response functions (i.e. attended-ignored).
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speaker (figure 3(D)). Again, the differences of the single 
subject’s response functions show a consistent pattern with 
a common negative deflection at a time lag of 130 ms and 
a later positive deflection at around 250 ms (figure 3(D)). 
The topographies of the components at 130 ms and 260 ms 
both have fronto-central patterns, spreading out towards 
temporal regions.

In both tasks, we have found response functions that show 
consistent patterns across subjects. In particular the deflec-
tions between responses to attended and ignored stimuli are 
prerequisites for a single channel classification approach 
(see  above). Most interesting, these deflections could even 
be  recorded at scalp-EEG electrodes located close to its in-
Ear-EEG reference electrode.

3.2. Goodness of f i t as a basis for identifying the attended 
stream

Goodness of fit was defined as correlation coefficient 
resulting from the Pearson-correlation of the measured 
EEG signal and the predicted EEG signal that consists of 
the responses to the to-be-attended and to-be-ignored stream 
(i.e. true prediction).

Generally, the average goodness of fit with values in a range 
of 0.02–0.15 (oddballs: mean  =  0.12, range 0.08–0.15; audio-
books: mean  =  0.04, range: 0.02–0.06) seems weak. In order 
to statistically evaluate if the correlations of the predicted and 
the measured EEG signals provide valuable information for 
classification, we investigated the distribution of the Fisher-
z-transformed Pearson-correlation coefficients ztrue and zfalse. 
Figures 4(A) and (B) show the distributions of the correlation 
coefficients in both tasks, where every single dot represents 
a single trial performed by a (colour-coded) single subject. 
The correlation of the true prediction and the measured EEG 
signal (ztrue) tends to be greater than its counterpart zfalse in the 
majority of the trials. The difference ztrue  −  zfalse was found 
to be significantly above zero for each subject (one-sample 
t-test, oddballs: six subjects p  <  0.001, one subject p  <  0.01, 
figure 4(C); audiobooks: two subjects p  <  0.001, one subject 
p  <  0.01, one subject p  <  0.05, figure  4(D)), suggesting it 
to be a valuable basis for deciding which of the streams is 
attended.

In order to evaluate which electrode configuration pro-
vides best inference on identification of the attended speaker, 
we inspected the grand average topographies (figures 4(C) 
and (D)) of the single subject t-values obtained from the 
distribution of the difference between ztrue and zfalse (see 
above). Strongest effects were found at in-Ear-EEG config-
urations incorporating fronto-central scalp-EEG channels. 
Interestingly, in both tasks highest t-values were observed for 
configurations consisting of scalp-EEG electrodes (i.e. FT7, 
FT8, T7, T8) close to the ear that the reference in-Ear-EEG 
electrode was placed in.

Generally, the analysis of goodness of fit gave insight how 
a set of two electrodes consisting of one electrode in the ear 
canal and another at the scalp close to the ear should be ori-
ented in order to explain attention related variance in the EEG 
signal caused by auditory stimulation.

3.3. The attended stream can be identi f i ed from single-chan-
nel configurations

Classification accuracy was defined as the percentage of trials 
the predicted EEG signal labeled true yields a more posi-
tive Pearson-correlation coefficient with the measured EEG 
signal than the predicted EEG signal labeled false. For statis-
tical analyses, Pearson-correlation coefficients were Fisher-z-
transformed and called ztrue and zfalse.

The classification accuracy at FT7 referenced to the 
left in-Ear-EEG electrode is shown in figures  4(E) and (F). 
Classification accuracy was found to be significantly above 
chance ( p  <  0.05) for all subjects and both the oddball task 
(mean: 77%, range 69–85%, figure 4(E)) and the audiobooks 
task (mean: 70%, range 62–80%, figure  4(F)) at this exem-
plary electrode configuration. With regard to the application 
in hearing aids, an in-Ear-EEG configuration consisting of 
two electrodes within the same ear canal is most desirable. We 
investigated those configurations as well and provide the results 
in the supplements (figure S2) (stacks.iop.org/JNE/14/036020/
mmedia). Note that these alternative configurations did not 
yield classification accuracy consistently above chance.

Grand average topographies of classification accuracy 
 (figures 4(E) and (F)) show patterns similar to the t-value topog-
raphies above (figures 4(C) and (D)). Highlighted  channels in 
figures 4(E) and (F) indicate that classification accuracy was 
found to be above chance (p  <  0.05) for at least all but one of 
the subjects. Interestingly, channels close to the ear the refer-
ence in-Ear-EEG electrode was placed in showed classification 
results above chance consistently across subjects.

Due to the low number of subjects, drawing a general con-
clusion on the most appropriate electrode configuration is not 
possible. However, for the present data we can state that we 
have found a configuration, showing classification results above 
chance for every subject consisting of only two electrodes, FT7 
referenced to left in-Ear-EEG electrode. Single-subject topo-
graphical maps provided in the supplements (figure S1(A)) 
confirm that various short-distance electrode configurations 
yield classification accuracy above chance. Based on the single-
channel data of subjects who participated in both tasks, we 
found a strong dependency of classification accuracy between 
tasks (figure S1(B)), which emphasizes the robustness of our 
findings despite our relatively low number of participants.

4. Discussion

It is a frequently stated long-term goal to fuse EEG recordings 
with hearing aid technology in order to attune the hearing aid 
to an attended sound source. Here, we investigated whether 
the attended sound stream out of two concurring streams can 
be identified from single channel EEG-recordings. Single 
channels were electrode configurations consisting of one ref-
erence in-Ear-EEG and one scalp-EEG electrode. We focused 
our analyses on a configuration consisting of a left in-Ear-
EEG electrode and scalp-EEG electrode FT7.

Participants performed two tasks. In both tasks, concur-
rent sound streams (i.e. tones and speech) were presented. We 
hypothesized single channel in-Ear-EEG data to provide valu-
able information to identify the attended stream.

J. Neural Eng. 14 (2017) 036020
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4.1. Response functions consistently reveal listeners’  
focus of attention

In contrast to backward models, the estimation of forward 
models allows the comparison of the obtained response func-
tions with conventional ERPs (Lalor et al 2009). An attention-
related difference between response functions is a prerequisite 
for identification of the attended speaker (see methods).

In both tasks, we have found an enhanced N100-
equivalent component in the responses to attended stimuli 
compared with ignored stimuli for each subject (figures 
3(A) and (B)). This is in line with auditory evoked poten-
tial (AEP) studies, showing that the N100 component is 
enhanced if the stimulus is attended (e.g. Näätänen et  al 
1981).

Figure 4. Goodness of fit and classification accuracy. Single subject data shown here were obtained from potential difference between 
left in-ear-EEG and FT7 electrode. Topographies show grand average data. (A) and (B) Each dot represents the relation of both Pearson-
correlations ztrue and zfalse in single trials of the oddball task. (C) and (D) Distributions of the difference ztrue  −  zfalse for single subjects, 
which were tested against zero (t-test). Topographies show grand average t-values. (E) and (F) Classification accuracy based on the 
difference ztrue  −  zfalse. Horizontal lines indicate significance above chance based in a binominal distribution. Topographic maps show grand 
average classification accuracy. Highlighted channels are indicating channels where at least n  −  1 subjects yield classification accuracies 
significantly above chance.

J. Neural Eng. 14 (2017) 036020
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Notably, attention-related differences in the response func-
tions could be found even in short-distance configurations 
consisting of a reference in-Ear-EEG electrode and a scalp-
EEG electrode close to the ear, as exemplarily shown for FT7 
referenced to left in-Ear-EEG electrode. In regards to hearing 
aid applications, these findings encourage the attachment of 
only a few electrodes in the periphery of the ear (Mirkovic 
et al 2016).

The consistent morphology of the difference between 
responses to attended and to ignored stimuli (figures 3(C) 
and (D)) further suggests the training of a model based on 
the data of all but one subject and test it on the latter (i.e. 
generic model). Even if not as accurate, O’Sullivan et  al 
(2015) showed that a generic model still allows predicting the 
attentional focus. With respect to its application in hearing 
aids, a generic model could provide a default set of parameter 
values before a listener-specific model is adapted over time 
(Mirkovic et al 2015). In the current study, the training of a 
robust generic model was hindered by the low number of sub-
jects and should be further investigated.

The dichotic oddball paradigm employed here also is 
appropriate when investigating neural responses to discrete 
and spatially separated stimuli. However, such a paradigm 
is removed from real-world listening scenarios, since two 
or more sound sources in natural environments are rarely 
separated in a dichotic fashion and are rarely as stationary 
regarding their rhythm and spectral content.

In contrast, the audiobooks paradigm with two diotically 
presented speakers represents a challenging listening situation 
and is more akin to realistic scenarios (also with respect to a 
listener’s goal, that is, following a sound source and compre-
hending what is being conveyed, Obleser 2014). Since no spa-
tial information is contained in the audio signal, a ‘worst case’ 
scenario was presented. Sound source separation can only be 
achieved based on spectral-temporal cues of the two speakers. 
Since each participant attended to either the male or to the 
female voice in the same number of trials, the revealed differ-
ences of the response function can’t be explained by spatially 
separated stimuli nor from speaker specific features.

In most of the cited studies on detection of auditory atten-
tion from EEG data, the speech envelope was used as stimulus 
representation (Mirkovic et  al 2015, O’Sullivan et  al 2015, 
Biesmans et al 2016). In contrast we used onset envelopes, 
that is, the halfwave-rectified first derivative of the envelope. 
Using instead the envelope led to similar detection accuracies 
(figure S4(A)), but responses were shifted by approximately 
50 ms such that the P50 equivalent component appeared before 
time lag of zero (figure S4(B)). This is due to every onset being 
followed by a peak in the envelope after approximately 50 ms 
(figure S4(C)). For the oddball task, the correct latencies of 
the components (i.e. P50, N100, P200) are known from previ-
ously calculated ERPs (Fiedler et al 2016). Since the latencies 
of the onset envelope responses in the audiobooks task fit the 
latencies of the ERP onset responses in the oddball task better 
than the envelope responses do, we conclude that onset enve-
lopes lead to more precise estimations.

A comparison of the response functions reveals sim-
ilar latencies of components between tasks, but the relative 

suppression of the response to the ignored stream is stronger 
in the audiobooks task. Two diotically presented speakers are 
more likely masking each other than dichotically presented 
tones of 100 ms length (and up to 614 ms pauses between 
tones). The suppression of the responses to the ignored 
speaker might indicate higher demand for suppression of the 
ignored stream and thus a higher task difficulty.

Of course, the low number of individually in-Ear-fitted sub-
jects tested here (n  =  7 and n  =  4) allows only for limited con-
clusions. However, the markedly consistent morphologies of 
the response functions and the individually significant detec-
tion success suggest that differential responses to attended 
and ignored auditory stimuli, even continuous speech, can be 
recorded from short-distance electrode configurations. These 
configurations here consisted only of one electrode in the ear 
canal and another close to the same ear, as exemplarily shown 
in figures 4(E) and (F) for a left in-Ear-EEG electrode refer-
enced to scalp-EEG electrode FT7. Please note that the shortest 
distance we could achieve was determined by the electrode 
positions of the scalp EEG. The exemplary electrode FT7 is 
placed at a distance of approximately 8 cm to the entrance of 
the ear canal (tragus) at an angle of 40° relative to the tragus-
Cz-line. With the development of adhesive electrodes to be 
attached around the ear it was shown that responses could be 
recorded at even closer positions (Bleichner et al 2016).

4.2. Goodness of f i t provides basis for identification  
of the attended stream

Former studies about approaches to identification of the 
attended speaker mainly used backward decoding models 
(O’Sullivan et al 2015, Mirkovic et al 2015, 2016, Biesmans 
et  al 2016). Backward models are trained on multi-channel 
EEG data and used to reconstruct a single speech envelope. In 
contrast, we used forward models to predict the EEG signal 
in response to the stimulus, which allowed us to quantify the 
goodness of fit at every single EEG channel (see methods).

The goodness of fit was quantified by Pearson’s correla-
tion-coefficient for the predicted versus the measured EEG 
signal. In the previous backward model studies cited above, 
correlation-coefficients obtained from Pearson-correlation of 
the reconstructed and the original speech envelope between 
0.02 and 0.10 were reported. Here, we obtained correlation 
coefficients of similar magnitude, but they were here obtained 
solely on the basis of a potential difference recorded at a single 
EEG-channel consisting of left in-Ear-EEG and scalp-EEG 
electrode FT7. Crucially, the topographies of single-trial-
derived t-values (figures 3(C) and (D)) show that meaningful 
differences can be found satisfyingly at single electrodes close 
to the referenced in-Ear-EEG electrode.

We thus conclude that short-distance electrode configura-
tions like the exemplary configuration consisting of the left in-
Ear-EEG reference and FT7 electrode capture information about 
the listener’s attentional focus and thus provide a basis for the 
identification of the attended sound source. To achieve this, we 
based our analyses on certain assumptions. First, we assumed 
that strongest responses can be found at stimulus onsets and thus 
extracted respective representations (see methods). Especially 
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for speech, features known to evoke responses are manifold and 
rarely mutually exclusive, since all are, to some extent, nested 
or derived from the broad-band temporal envelope (Ding and 
Simon 2014). Second, we applied ridge regression in order to 
train a model under the assumption of linearity and with the 
goal to reduce the mean squared error of the prediction. The 
extraction of features from speech is wedded to the selection 
of an appropriate model and both affect the contrast between 
responses to attended and ignored speech.

Comparing several methods of extracting features of 
speech and going beyond the simple assumption of linearity 
as well as incorporating several loss-functions might further 
boost the contrast between the two predicted EEG signals and 
thus further refine the information about the attentional focus.

4.3. The attended stream can be ident i f i ed from  
single-channel configurations

The major goal of this study was to identify the attended 
sound stream based on single-channel hearing aid-compatible 
EEG channel configurations. Considering that, classification 
accuracy is the most important measure to evaluate the perfor-
mance of our approach of single channel classification.

As stated above, former studies have used backward models 
to bring in the advantage of having multiple EEG signals to 
reconstruct one single speech envelope. In order to reduce the 
number of channels, Mirkovic et  al (2015) already applied 
an approach of recursive channel elimination. Starting from 
a grid of 96 channels, it was shown that a stepwise exclusion 
of worst performing channels doesn’t affect classification acc-
uracy up until approximately 25 channels were left. The best 
performing electrodes were concentrated at temporal positions 
close to the ear. However, the average of all electrodes served 
as reference potential which hinders a conclusion for single 
channel configurations consisting of only two electrodes. In a 
recent study (Mirkovic et al 2016), it was shown that based on 
the data of a grid of ten electrodes around the ear the attended 
speaker could be identified with a backward model. Here, we 
go even further and show that a montage of only two elec-
trodes, left in-Ear-EEG electrode and scalp-EEG-electrode 
FT7, is sufficient to identify the attended sound source in two 
experimental tasks. In Mirkovic et al (2016), we presume that 
placing a few electrodes at positions favorable for identifying 
the attended speaker is more crucial than obtaining more or 
less redundant EEG signals from multiple channels.

With respect to the long-term goal of controlling a hearing 
aid in real-time, our results provide valuable insight. First, in 
a hearing aid, computational resources are limited. We thus 
decided not to apply any method of artifact rejection or other 
methods of signal enhancement other than band-limiting the 
EEG-signal. Once a model is trained, the algorithm consists 
of only four convolutional operations and two correlations. 
Considering the comparably low sampling rate of 125 Hz and 
1 min trials of 7500 samples, the computational effort is com-
parably low.

Nevertheless, a classification accuracy of around 70% 
after 1 min might not yet comply with the requirements of 
a hearing-aid user. Furthermore, data were recorded in a 

shielded room which reduced environmental noise as well as 
subjects were asked to move as less as possible which lead to 
a minimum of muscle artifacts. Please note that an implemen-
tation of such an electrode configuration into a hearing-aid 
would raise further issues not addressed here, such as how 
to attach an electrode outside the ear canal and dealing with 
low conductance due to hairy positions and skin resistance. 
One possible solution might be permanently or daily placed 
electrodes around the ear (Debener et al 2015, Bleichner et al 
2016, Mirkovic et al 2016). Thus, for real-life applications, 
there are still major challenges ahead. Our findings however 
do map out a significant step towards the application of single 
channel in-Ear-EEG in future hearing aids.

5. Conclusion

The identification of attended sound sources based on neural data 
has become increasingly important for both, neuro-scientists 
and hearing aid developers, since it contains the potential to con-
trol a hearing prosthesis in a brain–computer interface fashion. 
One unsolved problem is the embedding of EEG electrodes and 
utilization of EEG signals in the hearing-aid periphery.

In the current study, we have shown that in-Ear-EEG can 
feasibly capture information about the listeners’ attentional 
focus. Thus, with only two electrodes attached, an auditory 
brain-computer interface could constantly track a listener’s 
attentional focus. This information could be fed back to other 
hearing aid algorithms in real-time (e.g. controlling for direc-
tional microphones and noise suppression) at low computa-
tional cost.
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