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A B S T R A C T

Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance.
However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained
elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated
the effect of levodopa (L-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal
variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopa-
minergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during
cognitive performance, and the degree of these modulations is able to explain inter-individual differences in L-
dopa-induced behavioral benefits. Relative to placebo, L-dopa increased BOLD signal variability in task-relevant
temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, L-dopa diminished
functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a
reduction in network efficiency and modularity in more than two thirds of the participants and to different de-
grees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well
as posterior putamen. Both, L-dopa-induced BOLD signal variability modulation and functional connectome
modulations proved predictive of an individual's L-dopa-induced benefits in behavioral performance, namely
response speed and perceptual sensitivity. Lastly, L-dopa-induced modulations of BOLD signal variability were
correlated with L-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline
the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and
their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance.
Introduction

Dopaminergic neurotransmission supports cognitive functions, such
as flexible updating and stable maintenance of working memory (Gold-
man-Rakic, 1995; Wang et al., 2004; Vijayraghavan et al., 2007; Cools
and D'Esposito, 2011; Kobayashi et al., 2017). Dopamine (DA) plays an
important role in modulating synaptic strengths of cortico-striatal path-
ways that subserve a wide range of cognitive functions (Reynolds and
Wickens, 2002). Interestingly, a mere increase of DA level is not bene-
ficial in every individual, and can even be detrimental to task perfor-
mance depending on individuals' baseline DA and cognitive performance
(Cools and Robbins, 2004; for a review, see Cools and D'Esposito, 2011).
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How changing the amounts of DA impacts the cortical dynamics at
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2017). Here, using a double-blind L-dopa vs. placebo intervention during
functional MRI, we investigate how DA increase modulates large-scale
cortical dynamics during cognitive performance, and whether this
modulation can explain intermittent, inter-individually differing behav-
ioral benefits from enhanced levels of DA in healthy young adults.

DA neurotransmission helps maintain the dynamic range of neural
circuits by regulating low-frequency tonic firing and phasic activity of DA
neurons (Grace, 1995, 2016; Venton et al., 2003; Kobayashi et al., 2017).
This in turn can have important consequences for cortical dynamics at
larger scale, and ultimately cognitive performance. Specifically, DA helps
maintain moment-to-moment cortical dynamics as measured by signal
variability (Garrett et al., 2015; Guitart-Masip et al., 2016), which has
been proposed to underlie optimal cognitive performance (McIntosh
et al., 2008; Garrett et al., 2015; Guitart-Masip et al., 2016; Arm-
bruster-Genç et al., 2016; see Grady and Garrett, 2014 for a review).
Thus, it is plausible to relate the impact of DA on cognitive performance
with the modulation of cortical signal variability as a result of changes in
neuronal firing patterns (Paladini et al., 2003) or changes on neuro-
vascular coupling and dynamics, which can affect the signal-to-noise
ratio of the BOLD signal (e.g., Handwerker et al., 2007; Zaldivar et al.,
2014). For instance, compared to younger adults, older adults often
exhibited a greater effect of DA challenge on the variability of hemody-
namic cortical responses (Garrett et al., 2015; Guitart-Masip et al., 2016),
which has been linked to cognitive performance differences between
older and younger adults.

Furthermore, the midbrain dopaminergic system innervates wide-
spread areas of cortex ranging from sensory to motor and prefrontal re-
gions (for review see e.g., Jaber et al., 1996; Seger and Miller, 2010;
Frank, 2011). Thus, changing DA availability may also modulate brain
dynamics on the network level (Kahnt and Tobler, 2017) by altering
functional associations among distributed cortical regions, which shape
the “functional connectome” in the human brain (Giessing and Thiel,
2012; Carbonell et al., 2014; Finn et al., 2015; Bell and Shine, 2016;
Cassidy et al., 2016; Mill et al., 2017). Functional connectivity by defi-
nition depends on the statistical associations between brain signals over
time. Thus, as higher DA availability may increase moment-to-moment
brain signal variability, potentially by enhancing neural phasic activity
(Paladini et al., 2003), DA availability could also impact the functional
connectivity between widespread cortical regions. Previous accounts
based on neural spike measurements suggest that, in the primary visual
cortex, much of the variability is shared among large groups of neurons
(Lin et al., 2015), and reflects global fluctuations affecting all neurons,
which substantially increase correlations among pairs of neurons (Goris
et al., 2014; Scholvinck et al., 2015). Thus, a direct relation between
higher signal variability and stronger functional connectivity is predict-
able. Indeed, brain signal variability has been previously suggested as a
proxy for information-processing capacity within brain networks (Stam
et al., 2002; McIntosh et al., 2008; Lippe et al., 2009; Mi�si�c et al., 2011;
Vakorin et al., 2011; McIntosh et al., 2014). Specifically, higher signal
variability has been associated with higher nodal centrality (an indica-
tion of an important node which has many connections) and network
efficiency (an indication of having a higher capacity for parallel infor-
mation processing; Mi�si�c et al., 2011). Besides, in brain networks derived
from neuromagnetic signals, it has been shown that the net information
transferred between nodes depends on their signal variability—as
measured by sample entropy—and time scale (Vakorin et al., 2011).
Accordingly, it has been proposed that brain networks showing higher
nodal variability over time have a greater potential for diverse functional
configurations (McIntosh et al., 2014). Further, theories of brain meta-
stability suggest that large-scale brain dynamics fluctuate between inte-
grated and segregated network states, where signal variability would
facilitate coordinated, flexible shifts between different network config-
urations (Deco et al., 2011; Tognoli and Kelso, 2014; Deco and Kringel-
bach, 2017).

Lastly, only a few studies have looked at the impact of DA on the
functional connectome. DA (and noradrenaline) appear to increase local
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functional connectivity within fronto-parietal areas during working
memory performance (Hernaus et al., 2017), whereas DA antagonists
decrease resting-state network efficiency (Achard and Bullmore, 2007).
Nevertheless, it remains unknown how DA modulates large-scale brain
network organization during cognitive performance, and how this
modulation links to modulations in brain signal variability and behavior.

The current study will address three questions. First, we investigate
how changing DA availability modulates large-scale cortical signal and
network dynamics during cognitive performance. Second, we ask
whether the extent of these modulations can explain the wide range of
inter-individual differences in behavioral benefits from DA during
cognitive performance (Cools and Robbins, 2004; for a review, see Cools
and D'Esposito, 2011). Finally, we examine whether L-dopa-induced
modulations in cortical signal variability correlate with L-dopa-induced
modulation of the functional connectome. To address these questions, we
conducted an fMRI experiment in which young healthy listeners per-
formed a previously established auditory working memory task (Lim
et al., 2015) with and without a single dose (150mg) of the DA precursor
L-dopa. We used graph-theoretical network analysis to explore the impact
of L-dopa on the functional connectivity and integration of large-scale
cortical networks engaged during the auditory working memory task.

We predicted that L-dopa would increase brain hemodynamic signal
variability in cortical regions important for auditory working memory
performance. On the network level, our tentative hypothesis was that L-
dopa would alter the integration of distributed cortical regions involved
in the auditory working memory task, as previous studies suggest higher
global integration of brain networks as the system-level mechanism for
working memory performance (Cohen and D'Esposito, 2016; Finc et al.,
2017). Guided by previous work (Cools and Robbins, 2004; Cools and
D'Esposito, 2011), we anticipated that the inter-individual differences in
behavioral benefits from DA would relate to the degrees of DA modula-
tions in BOLD signal variability and functional networks across partici-
pants. Lastly, based on the previous accounts on the role of higher brain
signal variability in cortical information processing and flexible network
dynamics, we expected a direct relation between DA modulations in
BOLD signal variability and the functional connectome.

Materials and methods

Participants

Twenty-two healthy young participants (mean age 27.9 years, age
range 25–35 years; 12 females) took part in the study. Two additional
participants completed the experiment, but were removed from data
analysis due to excessive head movements inside the scanner (i.e., total
movement> 3.5mm of translation or degrees of rotation; scan-to-scan
movement> 1.5mm or degrees). Participants reported no histories of
neurological or psychiatric disorders, and none were under any chronic
medication. Participants were recruited from the Max Planck Institute for
Human Cognitive and Brain Sciences database. Prior to participation all
volunteers received a separate debriefing session regarding L-dopa by in-
house physicians (B.S. and L.D.). All participants gave written informed
consent, and were financially compensated (60€ total). All procedures
were in accordance with the Declaration of Helsinki and approved by the
local ethics committee of the University of Leipzig (EudraCT number
2015-002761-33).

Procedure

All participants underwent two double-blind, counterbalanced fMRI
sessions, separated by at least one week. Procedures in both sessions were
identical. Each session was completed after administering orally either
150-mg L-dopa (Madopar LT; 150-mg Levodopa/37.5-mg benserazide) or
placebo. On each scanning (i.e., medication) session, blood pressure and
heart rate were measured four times throughout the experiment: before
and after in-take of the pills, and before and after the fMRI scanning.
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Exclusion criteria were based on physiological changes after medication
(i.e., greater than �20mm Hg in blood pressure and/or �10 beats per
minute in heart rate); none of the participants were excluded based on
these criteria. Before and after pill ingestion, participants completed a
questionnaire regarding subjective feelings and physical symptoms
(Bond and Lader, 1974). None of the participants were excluded due to
side effects of drugs. One participant felt nauseated after the completion
of the whole experiment (i.e., including the second fMRI experiment);
thus N¼ 22 data were included in the subsequent analyses.

To ensure that fMRI scanning takes place when L-dopa reaches peak
plasma concentration (~30min; Dingemanse et al., 1995), the fMRI scan
started approximately 35min after in-take of medication. During this
interim period (i.e., prior to scanning), participants completed a short
practice session in a separate behavioral testing room to ensure that they
understood the main experimental (auditory working memory) task.
After the practice session, participants were placed in the scanner and
went through a short hearing test of the auditory syllables used in the
task with the on-going scanner noise in the background. Time from
medication administration to scan onset in minutes was later used as a
nuisance regressor in all models reported (see Statistical analysis).

We acquired eight functional blocks on each medication session
(approximately 50min). During each block, participants completed a
total of 16 trials. Behavioral responses were collected via MR-compatible
response keys. Participants used both index fingers, each assigned to one
of two response keys, to give their response. The mapping between hands
and response keys were counterbalanced across participants. All auditory
stimulation was presented through MR-Confon headphones (Magdeburg,
Germany), with Music safe pro earplugs (Alpine Hearing Protection)
providing additional attenuation.

Auditory working memory task

During fMRI acquisition, participants performed a previously estab-
lished auditory working memory task—a syllable pitch-discrimination
task implemented with retroactive cues (see Lim et al., 2015 for full
details on the task and materials). Syllable tokens were recorded by a
native German female speaker. There were 12 different tokens (with
varying pitch) for each syllable category, and one token for each category
was randomly selected and presented during the encoding phase. The
pitch of syllable tokens was manipulated using Praat (version 5.3). All
sound tokens were digitized at 44.1 kHz, had a duration of 200-ms, and
normalized to equivalent amplitude (root-mean-squared dB full scale;
RMS dBFS).

In brief, on each trial participants encoded two distinct auditory
syllables (i.e.,/da/and/ge/presented in a random order), and detected a
change in the pitch of one of the syllables after a delay period (jittered
between 9 and 13 s). During the maintenance of the encoded syllables,
one of the two types of retro-cue was presented for 1 s on the screen; on
equal probability for each task block, a valid cue (written syllable, “da” or
“ge”) or a neutral cue (“xx”) was presented. The valid cue was used to
direct participants' attention to one of the to-be-probed auditory syllable.
The neutral cue, however, did not provide any information about up-
coming auditory probe. After 5–7 s following the visual retro-cue, an
auditory probe syllable was presented.

Within a 4-s time window upon hearing the probe, participants
compared the pitch of the probe syllable to that of the same category
syllable heard during encoding, and responded “high” or “low” accord-
ingly. Syllable pitch change that occurred at probe was parametrically
varied in four steps (�0.125 and� 0.75 semitones) relative to its original
pitch heard during encoding. On each trial, participants received a visual
feedback (written as “correct” or “incorrect” in German) for 500ms.

Note that the current study is focused on investigating the overall
effect of L-dopa on on-going BOLD signal dynamics during the auditory
working memory performance. Thus, we here will not elaborate on the
(potentially more complex) phasic effects and interactions involving the
cue manipulation.
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MRI data acquisition and preprocessing

Whole-brain functional MRI data were collected using a Siemens
MAGNETOM Prisma 3T. Functional data were acquired with a 20-channel
head/neck coil using an echo-planar image (EPI) sequence [repetition time
(TR)¼ 2000ms; echo time (TE)¼ 26ms; flip angle (FA)¼ 90�; acquisition
matrix¼ 64� 64; field of view (FOV)¼ 192mm� 192mm; voxel
size¼ 3� 3� 3mm; inter-slice gap¼ 0.3mm]. Each image volume had
forty oblique ascending axial slices parallel to the anterior commissur-
e–posterior commissure (AC–PC) line.

Structural images of fifteen participants were available from the data-
base of the Max Planck Institute (Leipzig, Germany), where a magnetiza-
tion prepared rapid gradient echo (MP-RAGE) sequence had been used to
acquire the structural images [TR¼ 2300ms; TE¼ 2.01–2.98ms; FA¼ 9�;
1-mm isotropic voxel; 176 sagittal slices]. For participants without pre-
existing structural images in the database, a high-resolution T1-weighted
structural image was acquired using an MP-RAGE sequence
[TR¼ 2300ms; TE¼ 2.98ms; FA¼ 9�; 1-mm isotropic voxel; 176 sagittal
slices] at the end of the second fMRI session.

Preprocessing
During each functional block 181 volumes were acquired. To allow

signal equilibration, the first two volumes of each block were removed,
and the remaining 179 volumes per block were used for the subsequent
analyses. Preprocessing steps were undertaken in SPM12 (Frackowiak
et al., 2004). First, the functional images were spatially realigned to
correct for head motion using a least square approach and the six rig-
id-body affine transformations. Then, the functional volumes were cor-
rected for slice timing to adjust differences in image acquisition times
between slices. This is accomplished by a shift of the phase of the sinu-
soids that make up the signals. Subsequently, functional images were
coregistered to each individual's structural image. This is achieved by
first segmentation of the structural image using tissue probability maps,
and then registering the image segments using the rigid body trans-
formations and based on normalized mutual information as an objective
function (unified segmentation; Ashburner and Friston, 2005). The
resulting functional volumes were then spatially normalized to the
standard stereotacticMNI space. No spatial smoothingwas applied on the
volumes to avoid potential artificial distant-dependent correlations be-
tween voxels' BOLD signals (Fornito et al., 2013; Stanley et al., 2013),
which subsequently constitute the input data for functional connectivity
analysis (Fig. 1A).

Brain parcellation
Cortical nodes were defined using a parcellated AAL template

(Tzourio-Mazoyer et al., 2002) encompassing 485 uniform and compact
grey-matter cortical regions (Fornito et al., 2010; Zalesky et al., 2010,
Fig. 1A). This template was used to estimate the mean BOLD signals
across voxels within each cortical region per participant. To examine the
robustness of the findings with respect to the definition of network nodes,
we also used a functional parcellation encompassing 333 cortical areas
(Gordon et al., 2016). In addition, to investigate the significance of
striatal contribution in our data, we used a separate functional parcel-
lation of the striatum with seven seed regions (Choi et al., 2012).

To minimize the effects of spurious temporal correlations induced by
physiological and movement artifacts, a general linear model (GLM) was
constructed to regress out white matter and cerebrospinal fluid (CSF)
mean time series together with the six rigid-body movement parameters
(Hallquist et al., 2013; Jo et al., 2013). Subsequently, the residual time
series obtained from this procedure were concatenated across the eight
blocks per medication session for each participant. The time series were
further processed through two analysis streams (Fig. 1A): one analysis
focused on BOLD signal variability (univariate approach) and the other
on functional connectivity and network topology (multivariate approach;
McIntosh and Mi�si�c, 2013; Mi�si�c and Sporns, 2016). Since one of the
questions that the present study aims to address is the direct relation



Fig. 1. Overview of methodology and behavioral performance. (A) Two analysis streams were used to investigate two aspects of brain dynamics: signal variability
and large-scale network topology. Both analyses used mean BOLD signals across voxels within each of 485 parcellated cortical regions. BOLD signal variability was
computed as the variance of BOLD signal through each fMRI session. The topology of the functional connectome was analyzed using graph-theoretical metrics,
which captured network interactions across cortex on local, intermediate and global scales of topology. These include local network efficiency (a metric related to
the clustering of a network; red triangle), network modularity (a measure of decomposability of a network into communities; light ovals) and global network
efficiency (a metric inversely related to the shortest path between nodes; red path). (B) Behavioral performances measured by response speed (left) and perceptual
sensitivity d’ (right) across eight blocks of the auditory working memory task (adapted from Lim et al., 2015). Block-wise performances are shown based on the
order of the scanning sessions and based on the medication sessions. Error bar: �1 standard error of the mean (SEM). (C) Group average and individuals'
behavioral performances in response speed (left) and perceptual sensitivity d’ (right). Scatter plots illustrate individuals' task performances in the L-dopa and
placebo sessions. Histograms show the distribution of the modulations (L-dopa minus placebo) of the corresponding measures across 22 participants.
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between dopaminergic modulation of brain signal variability and net-
works, we used the same cortical nodes across the two analysis streams.

BOLD signal variability

Prior to quantifying signal variability, the time series data were band-
pass filtered within the range of 0.06–0.12 Hz (see Functional connectivity
section below for further details). Furthermore, we equated the mean
BOLD signal throughout the experimental blocks for each medication
session to remove block-wise drifts (e.g., Garrett et al., 2010, 2011,
2013). To this end, for each block and cortical region, we demeaned the
residual BOLD time series. Next, for each region, BOLD signal variability
was expressed as the variance of the resulting normalized signal
concatenated across 8 blocks of each medication session. The main focus
of the current study is on the amount of brain and behavioral modula-
tions under L-dopa relative to placebo. Instead of computing a difference
between two standard deviations of BOLD signal (cf. Garrett et al., 2010,
2011, 2013), the difference measure of the variances was used to
compute actual differences in signal variability. Since, given the same
amount of difference in two variances, the difference in the corre-
sponding standard deviations tend to be smaller as the absolute variance
gets higher, we used variance measures to avoid scaling changes due to
the non-linear transformation from variance to standard deviation. The
statistical tests were performed using non-parametric procedures (see
Statistical analysis section), which are robust against non-Gaussian dis-
tribution of the signal variability measure.

Signal variability for each cortical region represents signal dynamics
on the regional level. Accordingly, signal variability on the whole-brain
level was computed as the mean variance across all cortical regions
(i.e., 485 regions). Signal variability was separately quantified for the L-
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dopa and placebo sessions. L-dopa-induced modulation of signal vari-
ability was then quantified as the difference of BOLD signal variability
between L-dopa versus placebo (i.e., L-dopa–placebo). As such, we treated
the placebo session as baseline for both brain and behavior during the
auditory working memory task.

Functional connectivity

First, mean residual time series were band-pass filtered by means of
maximum overlap discrete wavelet transform (Daubechies wavelet of
length 8; Percival and Walden, 2000), and the results of the filtering
within the range of 0.06–0.12 Hz (wavelet scale 2) were used for further
analyses. It has been previously documented that the behavioral corre-
lates of the functional connectome are best observed by analyzing
low-frequency large-scale brain networks (Salvador et al., 2005; Achard
et al., 2006, 2008; Giessing et al., 2013; Alavash et al., 2015a). The use of
wavelet scale 2 was motivated by previous work showing that perfor-
mance during cognitive tasks predominately correlated with changes in
functional connectivity in the same frequency range (Bassett et al., 2010;
Alavash et al., 2015b, 2016). To obtain a measure of association between
each pair of cortical regions, Pearson correlations between wavelet co-
efficients were computed, which resulted in one 485� 485 correlation
matrix (333� 333 in the case of functional parcellation) for each
participant and medication session (Fig. 1A).

Connectome analysis

Brain graphs were constructed from the functional connectivity
matrices by including the top 10% of the connections in the graph ac-
cording to the rank of their correlation strengths (Ginestet et al., 2011;
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Fornito et al., 2013). This resulted in sparse binary undirected brain
graphs at a fixed network density of 10%, and assured that the brain
graphs were matched in terms of density across participants and medi-
cation sessions (van Wijk et al., 2010; van den Heuvel et al., 2017). To
investigate whether choosing a different (range of) graph density
threshold(s) affects functional connectivity and network topology dif-
ferences between placebo and L-dopa (Garrison et al., 2015), we exam-
ined the effect of graph thresholding using cost-integration approach
(Ginestet et al., 2011; Fig. S2).

Mean functional connectivity was calculated as the average of the
upper-diagonal elements of the sparse connectivity matrix for each
participant per medication session. In addition, three key topological
metrics were estimated: mean local efficiency, network modularity, and
global network efficiency. These graph-theoretical metrics were used to
quantify functional integration of large-scale brain networks on the local,
intermediate, and global scales of topology, respectively (Fig. 1A; Betzel
and Bassett, 2016).

For each topological property, we computed a whole-brain metric,
which collapses the measure of network integration into one single value,
and a regional metric characterizing the same network property but for
each cortical region (Rubinov and Sporns, 2010). The regional network
metrics were therefore used to localize cortical regions contributing to
the L-dopa-induced modulations observed on the whole-brain level. We
used nodal connectivity (also known as ‘nodal strength’) as the regional
measure of mean functional connectivity. Local efficiency was computed
within each cortical region's neighborhood graph as the regional measure
of mean local efficiency. Finally, nodal efficiency was measured to cap-
ture the integration of a given region to the entire network, hence rep-
resenting the regional measure of global network efficiency (see Fig. 1A
for an illustration). Below we provide the formalization of the
above-mentioned graph-theoretical network metrics.

Nodal connectivity and degree
Nodal connectivity was measured as the sum of the absolute corre-

lations (weights of the connections) linking a cortical (or striatal) node to
the other (cortical) nodes. Nodal degree (a simple measure of degree
centrality) was quantified as the number of connections per node. Dis-
integrated nodes were identified as nodes with a degree of zero,
accordingly.

Global network efficiency
In a graph-theoretical sense, global network efficiency is a measure of

information processing capacity of a network. For a given graph G
comprised of N nodes, global efficiency Eglobal summarizes the capacity of
the network for parallel processing across distributed nodes. This metric
is estimated by the inverse of the harmonic mean of the shortest path
lengths (i.e., the smallest number of intervening connections) between
each pair of nodes Li;j:

Eglobal ¼ 1
NðN � 1Þ

X
i6¼j2G

1
Li;j

(1)

An efficient network is characterized by having a short average
minimum-path between all pairs of nodes. Such a network is considered
to have high efficiency in parallel (or global) information processing
(Bullmore and Sporns, 2009). Likewise, nodal efficiency at node i, EnodalðiÞ,
(as the regional measure of global network efficiency) is inversely related
to the path length of connections between a specific node and the rest of
the nodes (Latora and Marchiori, 2001):

EnodalðiÞ ¼ 1
ðN � 1Þ

X
j2G

1
Li;j

(2)

Local network efficiency
By slightly zooming out from a given node within a graph, the nearest

neighbors of the node that are directly connected to each other form a
345
cluster. This local integration can be quantified based on the local effi-
ciency of node i; ElocalðiÞ, which is mathematically equivalent to global
efficiency (Eq. (1)) but is computed on the immediate neighborhood of
node i. On the whole-brain level, mean local efficiency can be quantified
by averaging local efficiency across all nodes:

Elocal ¼ 1
N

X
i2G

ElocalðiÞ (3)

Network modularity
Modularity describes the decomposability of a network into non-

overlapping sub-networks, characterized by having relatively dense
intra-connections and relatively sparse inter-connections. Rather than an
exact computation, modularity of a given network is estimated using
optimization algorithms (Lancichinetti and Fortunato, 2009; Stein-
haeuser and Chawla, 2010). The extent to which a network partition
exhibits a modular organization is measured by a quality function, the
so-called modularity index (Q). We used a common modularity index
originally proposed by Newman (2006), and employed its implementa-
tion in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010)
which is based on the modularity maximization algorithm known as
Louvain (Blondel et al., 2008). The modularity index is defined as:

Q ¼ 1
2W

X
i;j

�
Ai;j � γ

kikj
2W

�
δ
�
ci; cj

�
(4)

Q ranges between�1 and 1. In Eq. (4), Ai;j represents the weight (zero
or one if binary) of the links between node i and j, ki ¼

P
j
Ai;j is the sum of

the weights of the links connected to node i, and ci is the community or
module to which node i belongs. The δ-function δðu; vÞ is 1 if u ¼ v and
0 otherwise, and W ¼ 1

2

P
i;j
Ai;j. Similar to previous work (Bassett et al.,

2010; Alavash et al., 2016), the structural resolution parameter γ (see
Fortunato and Barthelemy, 2007; Lohse et al., 2014) was set to unity for
simplicity. The maximization of the modularity index Q gives a partition
of the network into modules such that the total connection weight within
modules is as large as possible, relative to a commonly used null model

whose total within-module connection weights follows kikj
2W. Thus, a

“good” partition withQ closer to unity gives network modules with many
connections within and only few connections between them; in contrast,
a “bad” partition with Q closer to zero gives network modules with no
more intra-module connections than expected at random (Good et al.,
2010). Thus, higher Q reflects higher functional segregation on the in-
termediate level of network topology (Rubinov and Sporns, 2010; Betzel
and Bassett, 2016). Due to stochastic initialization of the greedy opti-
mization, the module detection algorithmwas applied 100 times for each
brain graph, and the partition that delivered the highestQ value was kept
(see Lancichinetti and Fortunato, 2012; Bassett et al., 2013, for other
approaches to construct representative high-modularity partitions).
Statistical analysis

Control of medication-session order and other confounding factors
In the present study, all participants went through the same proced-

ure twice on separate days. We did not expect to observe learning during
the auditory working memory task, but we examined the potential
learning effect within and between the two sessions in order to control
for potential confounds in interpreting the L-dopa effect. First, we
examined a potential learning over task blocks within each scan session,
and whether the degree of learning differs between the two sessions (see
Fig. S6). Neither behavioral measures showed any significant learning
effect across blocks (Table S1). Also, we did not find any significant
differences in the degree of potential learning between the first versus
second session or between L-dopa versus placebo (Fig. 1B; Fig. S6;
Table S1). Using a similar approach, we investigated changes in measures
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of brain dynamics within each session over task blocks. We only found
significant linear increases in signal variability and functional connec-
tivity over task blocks (see Fig. S6 and Table S1 for details). However,
important for the current study, there was no significant difference be-
tween placebo and L-dopa sessions.

Next, we examined if there is any difference in mean performances
between two sessions. We observed significant effects of session order
(first vs. second scan session), regardless of medication conditions, on
both behavioral and brain measures. Participants' responses were
significantly faster in the second session (F1,21¼ 8.66; p¼ 0.008). Also,
global network efficiency and network modularity (Q) were significantly
higher in their second session (Eglobal: Cohen's d¼ 0.4, p¼ 0.008; Q:
Cohen's d¼ 0.43, p¼ 0.02). This could be arguably due to differences in
arousal and/or having an easier time in performing the auditory working
memory task, as participants are likely to be more relaxed and adapted to
drug administration, scan procedure, and task during the second session
(Fan et al., 2012; Kitzbichler et al., 2011; Stevens et al., 2012).

Importantly, to control for potential confounding factors in the
interpretation of L-dopa effects, all ensuing comparisons of L-dopa versus
placebo were performed on residualized measures, that is, after
regressing out covariates of no interest. These covariates included
medication-session order (L-dopa first versus placebo first), body mass
index (BMI), and time from medication administration to scan onset.
Furthermore, we ensured that the participants heart rate before, during,
and after scanning were not significantly different between the first and
second session or between L-dopa and placebo session (see Table S2).

Control of head motion
In recent years, the potential confounding impact of head motion or

non-neural physiological trends on the temporal correlations between
BOLD signals has been raised by multiple studies (see Murphy et al.,
2013; Power et al., 2015 for reviews). In the current study, we conducted
additional analyses using measures of head motion to ensure that
movement was not different between L-dopa and placebo sessions, and
that correlations between modulations in brain and behavior were not
affected by overall head motion (see Fig. S3).

Behavioral data
For eachmedication session, we calculated average response speed on

correct trials (i.e., an inverse of response time) and a bias-free measure of
perceptual sensitivity, d' (Macmillan and Creelman, 2004). In order to
assess the overall effect of L-dopa on behavioral performance across
participants, we performed a separate repeated-measures analysis of
variance (ANOVA) on response speed and perceptual sensitivity d'. To
control for potential confounding factors in the interpretation of L-dopa
effects, covariates of no interest (as listed above) were regressed out from
the behavioral measures prior to conducting an ANOVA.

Medication effects on brain measures
On the whole-brain level, statistical comparisons of signal variability

and network metrics between L-dopa and placebo sessions were based on
exact permutation tests for paired samples. We used Cohen's d for paired
samples as the corresponding effect size (Gibbons et al., 1993; Hentschke
and Stuttgen, 2011; Lakens, 2013).

On the regional level, and for the analysis of both BOLD signal vari-
ability and network metrics, a bootstrap procedure with 10,000 repli-
cations was employed to test the medication effect. The bootstrap
procedure allowed us to use a CI-based correction method to account for
multiple comparisons across cortical regions (see below). For every
cortical region per participant, we first computed the difference between
the regional metrics (i.e., L-dopa–placebo). Then, the bootstrap distri-
bution of the mean difference across all participants was estimated and
used for statistical inference. Finally, Cohen's d for paired samples was
calculated as an effect size (Gibbons et al., 1993; Hentschke and Stuttgen,
2011; Lakens, 2013).
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Correlational analyses
We further performed correlation analyses to examine whether the

individual degree and direction of L-dopa-induced modulations of BOLD
signal variability and networks would relate to the individual behavioral
modulations. To this end, we computed the L-dopa-induced modulations
by taking a difference (i.e., L-dopa–placebo) in both brain and behavioral
measures. As such, we treated the placebo session as baseline for both
brain and behavior during the auditory working memory task. Consistent
with the analysis of behavioral data described above, we accounted for
the potential confounding factors prior to the correlation analyses by
regressing out the covariates of no interest (i.e., medication-session
order, BMI, time from medication administration to scan onset).

Correlations between L-dopa-induced modulations in brain dynamics
(i.e., BOLD signal variability or brain network metrics) and modulations
in task performance were tested using rank-based Spearman correlation
(rho). On the whole-brain level, the significance of the correlations was
tested using a permutation test with 10,000 randomizations (Pesarin and
Salmaso, 2010). On the regional level, a bootstrap procedure with 10,000
replications of the correlation coefficients was used for statistical infer-
ence. Using the same bootstrap procedures, we further examined the
relationship between dopamine-related modulation of BOLD signal
variability and modulations of the functional connectome.

Significance thresholds
For all statistical tests, we used α ¼ 0:05 (two-sided) as uncorrected

threshold of significance. For the regional analysis, and to correct for
multiple comparisons entailed by the number of brain regions, we
implemented the false coverage-statement rate (FCR) correction method
(Benjamini and Yekutieli, 2005; applied e.g., in Obleser et al., 2010;
Alavash et al., 2017). This method first selects the regions where the
bootstrap distribution of the mean difference or correlation coefficients
do not cover zero at the confidence level of 95%. In a second correction
pass, FCR-corrected CIs for these selected regions are (re-)constructed at
a level of qFCR ¼ 1� Fs � q

Ft
, where Fs is the number of selected regions at

the first pass, and Ft is the total number of brain regions. The tolerated
rate for false coverage statements is q, here 0.05, at which the enlarged
FCR-corrected intervals thus control the false-positive rate at the desired
level.

Results

Effect of L-dopa on behavioral performances

Fig. 1C illustrates the effect of medication (i.e., L-dopa vs. placebo) on
overall behavioral performances in the auditory working memory task.
Neither behavioral performance measures showed a consistent medica-
tion effect overall across participants (repeated-measures ANOVA with
nuisance variables controlled; main effect of medication on response
speed: F1,21¼ 0.22, p¼ 0.65, η2p¼ 0.01; main effect on perceptual
sensitivity d’: F1,21¼ 0.13, p¼ 0.73, η2p¼ 0.006). However, there was
sizable inter-individual variation in the degree to which behavior
benefitted (or suffered) from the L-dopa manipulation (see Cools and
D'Esposito, 2011 for review).

For both behavioral performance measures, we found about an equal
split of participants showing opposite directions of the L-dopa effect
(Fig. 1C). It is possible that the direction of enhancement versus detri-
ment from DA change can depend upon task performance levels (Cools
and D'Esposito, 2011; Garrett et al., 2015; Gibbs and D'Esposito, 2005).
To test whether the high individual variability is driven by the session at
which L-dopa was administered, we examined a potential interaction
effect of medication�medication–session-order. We did not find an ef-
fect for sensitivity d’ (F1,17¼ 2.99, p¼ 0.10, ηp2¼ 0.15), but found a
significant interaction effect on response speed (F1,17¼ 6.15, p¼ 0.024,
ηp2¼ 0.27), indicating that individuals receiving L-dopa on the second
session exhibit greater behavioral improvement (t20¼ 2.83; p¼ 0.01)
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but to differing degrees. Hence, in the next sections, we further investi-
gated whether such inter-individual differences of benefit from DA (see
also Sharot et al., 2012) can be explained by L-dopa-induced modulations
in brain dynamics. Since the focus of the study is to examine the effect of
L-dopa alone, we explored the inter-individual differences while con-
trolling the effect of session order.

Modulation of signal variability under L-dopa vs. placebo

We started by investigating whether L-dopa modulates BOLD signal
variability. We tested BOLD signal variability changes (L-dopa vs. pla-
cebo) on the whole-brain (i.e., average signal variability across all re-
gions) as well as regional level. On the whole-brain level, a slight increase
in BOLD signal variability with L-dopa relative to placebo was observed,
but this increase was not statistically significant (ML-dopa–Placebo¼ 1.33;
Cohen's d¼ 0.20; p¼ 0.36).

Next, we continued by analyzing signal variability on the regional
level. L-dopa-induced modulations of signal variability were evident and
statistically significant across a distributed set of sensory as well as het-
eromodal cortical regions. As illustrated in Fig. 2A, we found increased
BOLD signal variability under L-dopa in bilateral anterior and posterior
superior temporal regions, right inferior frontal gyri (IFG), and bilateral
occipital and parahippocampal regions. In addition, an L-dopa-induced
BOLD signal variability increase was observed in the superior cingulate
cortex, bilateral motor cortices in the pre- and post-central regions.We also
observed an opposite direction of L-dopa effect. Cortical regions mostly in
bilateral inferior temporal, middle frontal gyri, and anterior cingulate
exhibited significant decrease in variability under L-dopa (Cohen's
d> 0.28). On the contrary, applying the same contrast (i.e., L-dopa versus
placebo) to mean BOLD activation during task performance did not yield
any region showing a significant medication effect (see Fig. S7 for details).

Subsequently, we investigated whether the extent of L-dopa-driven
modulations in BOLD signal variability correlated with individuals'
behavioral benefits from L-dopa. For each region, we evaluated the
relationship based on 10,000 bootstrapped iterations of correlation (i.e.,
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Spearman's rho) between modulations of BOLD signal variability and
modulations of behavioral performance under L-dopa (i.e., L-
dopa–placebo).

With respect to response speed, individuals' BOLD signal variability
modulations under L-dopa correlated with their gain in response speed
under L-dopa. Specifically, greater signal variability in right IFG, bilateral
precentral regions, bilateral angular gyri/SMG, and left parietal regions,
correlated with faster responses under L-dopa (Fig. 2B, left).

With respect to perceptual sensitivity, the degree of BOLD signal
variability modulation also correlated positively with L-dopa-induced
change in d’—especially so in the left superior frontal lobe, left insula, and
left parahippocampus (Fig. 2B, right). Conversely, signal variability mod-
ulations in left postcentral/motor cortical regions, left inferior parietal and
right superior parietal regions exhibited significant negative correlations
with d’ change. We further investigated the relationship between the el-
ements of the change scores by examining the brain-behavior correlations
separately under each placebo and L-dopa session, which did reveal strong
modulations in one specific session (Fig. S9).

In the striatum, the effect of L-dopa on hemodynamic signal vari-
ability was investigated based on the signals extracted from seven seed
regions (see Modulation of striato-cortical connectivity below for details).
We only found a significant decrease of variability in the caudate head
under L-dopa relative to placebo (FCR-corrected p< 0.05; Cohen's
d¼ 0.46). This region has been previously associated with the default
mode network on the cortical level, including the posterior cingulate and
medial prefrontal cortices (Choi et al., 2012). However, the extent of
L-dopa-induced signal variability modulations in the striatal regions did
not significantly correlate with the modulations of behavior under L-dopa
relative to placebo (d’: all j rhos j< 0.23, all ps> 0.30; response speed: all
j rhos j< 0.38, all ps> 0.08).

Whole-brain modulation of the functional connectome under L-dopa vs.
placebo

One of the aims of the present study is to address how dopaminergic
Fig. 2. L-dopa-related modulation of BOLD signal variability
and its relation to modulations of behavioral performance.
(A) Cortical regions exhibiting significant change in signal
variability under L-dopa versus placebo. The difference in
signal variability (i.e., Δ : L-dopa–placebo) was expressed as
Cohen's d effect size. (B) Cortical regions exhibiting signifi-
cant correlations between L-dopa-induced modulations of
signal variability and behavioral performance. Response
speed (left) and perceptual sensitivity d’ (right). Statistical
significance (corrected for multiple comparisons) was
ensured based on non-zero coverage of FCR-corrected 95%
CIs of the 10,000 replications of bootstrapped distribution of
the respective measures in (A) and (B) for each region (see
Materials and Methods). Visualizations on the cortical surface
were rendered using BrainNetViewer (Xia et al., 2013). L: left;
R: right.
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modulation impacts the brain network dynamics engaged in a cognitive
task. We approached this question by measuring functional connec-
tivity and integration of large-scale cortical networks using graph-
theoretical metrics. The fMRI data were obtained from the partici-
pants who performed the auditory working memory task separately
under L-dopa and placebo. We thus compared the brain network metrics
between L-dopa and placebo across participants. This comparison
revealed significant modulations in the connectivity and topology of
brain networks under L-dopa versus placebo (Fig. 3). The degree and
direction of these modulations, however, were not homogenous across
participants.

First, on the group level, functional connectivity showed a significant
increase—that is, a relative ‘hyper-connectivity’—under L-dopa as
compared to placebo (Cohen's d¼ 0.4, p¼ 0.03; Fig. 3A, top left). Across
participants, the degree and direction of this modulation exhibited a
sizable inter-individual variability: 13 out of 22 participants showed in-
crease in functional connectivity. This relative hyper-connectivity was
also observed when we compared the mean of raw functional connec-
tivity strengths (i.e., without graph-thresholding; Cohen's d¼ 0.35,
p¼ 0.04). In addition, we found a significant alteration in the functional
connectivity distribution—in particular its median and variance—under
L-dopa relative to placebo (Fig. S4).

Second, functional integration of brain networks on the group level
showed a significant decrease under L-dopa versus placebo. This
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relative ‘hypo-integration’ of brain networks was consistently observed
on the local, intermediate and global scales of topology, with a sizable
inter-individual variability in the degree and direction of the modula-
tion. More specifically, local efficiency of brain networks—a measure
inversely related to the topological distance between network nodes
within local cliques or clusters—was lower in 14/22 participants under
L-dopa than placebo (Cohen's d¼ 0.43, p¼ 0.003; Fig. 3A, top right). In
addition, modularity of brain networks—grouping of partner nodes
within sub-networks—significantly decreased under L-dopa in contrast
to placebo (Cohen's d¼ 0.53, p¼ 0.002; Fig. 3A, bottom left). Across
individuals, network modularity was lower in 15/22 participants.
Moreover, global network efficiency—a metric known to measure the
capacity of brain networks for parallel processing—was significantly
decreased under L-dopa compared to placebo (Cohen's d¼ 0.4,
p¼ 0.012; Fig. 3A, bottom right). This relative hypo-integration was
observed in 16/22 participants, and turned out to be—at least par-
tly—due to higher fractions of disintegrated nodes in brain networks
under L-dopa compared to placebo (Fig. S1). Thus, L-dopa diminished
network integration within the functional connectome on different
scales of topology, with inter-individually differing degrees. Similar
results were found when brain networks were constructed on different
wavelet scales (Fig. S5).

Knowing the heterogeneity of L-dopa-induced modulations in our
sample, we next investigated whether the reorganization of the
Fig. 3. Modulation of the functional connectome under L-
dopa and its relation to modulations of behavioral perfor-
mance. (A) Whole-brain network metrics under L-dopa and
placebo were compared using permutation tests. Bar plots
show group average brain network metrics (error bars: �1
SEM). Scatter plots illustrate the degree and direction of
modulations (L-dopa versus placebo) for each participant.
Histograms show the distribution of the modulations (L-dopa
minus placebo) across all participants. Under L-dopa relative
to placebo, 13/22 participants showed increase in functional
connectivity—a relative ‘hyper-connectivity’. Moreover, in
most of the participants functional integration of brain net-
works decreased under L-dopa—a relative ‘hypo-integra-
tion’—on all three topological scales: local network efficiency
(14/22 participants), network modularity (15/22 partici-
pants) and global network efficiency (16/22 participants). (B)
Correlations between modulations of the functional con-
nectome and modulations in behavioral performance (Δ : L-
dopa–placebo). Participants who showed higher degrees of
hyper-connectivity under L-dopa responded faster. Besides,
participants with more pronounced hypo-integration under L-
dopa (i.e., lower global network efficiency) showed higher
perceptual sensitivity d'. The significance of the Spearman's
correlations (rho) was tested using permutation tests with
10,000 randomizations. Shaded area shows two-sided para-
metric 95% CI. Note that, prior to correlation analysis, all
measures were residualized w.r.t. medication session order (L-
dopa first versus placebo first), BMI, and time from medica-
tion administration to scan onset.
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functional connectome under L-dopa explains the degree of the partic-
ipants' behavioral benefits from L-dopa during the working memory
task. We tested the correlation between the modulation (i.e., L-dop-
a–placebo) in the functional connectome on the one hand, and the
modulation in task performance on the other hand. The change in task
performance correlated significantly with both, the modulation in
functional connectivity and global efficiency of brain networks
(Fig. 3B). Specifically, participants who showed higher degrees of
hyper-connectivity under L-dopa also displayed higher gains in
response speed under L-dopa than placebo (Fig. 3B, left). Besides, par-
ticipants with lower degrees of global network efficiency (equivalently
more pronounced hypo-integration) under L-dopa showed higher gains
in perceptual sensitivity (d'; Fig. 3B, right). However, the correlation
between modulations in mean local efficiency or network modularity
(Q) of the functional connectome and either of the performance mea-
sures were not significant (Elocal~response speed: rho¼ 0.01, p¼ 0.9;
Elocal~d': rho¼�0.23, p¼ 0.3; Q~response speed: rho¼�0.26,
p¼ 0.23; Q~d': rho¼ 0.19, p¼ 0.4). To examine the correlations be-
tween the elements that make up our change scores, we also investi-
gated the brain-behavior correlations separately under each placebo
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and L-dopa session (Fig. S9).

Regional modulation of the functional connectome under L-dopa vs. placebo

To localize cortical regions contributing to the L-dopa-induced mod-
ulations observed on the whole-brain level (Fig. 3), we analyzed the
functional connectome on the regional level. To this end, we used nodal
network metrics representing a given network property at each cortical
region (see Materials and Methods: Connectome analysis). Consistent with
the whole-brain level analysis, we compared the regional network
properties of the functional connectome between L-dopa versus placebo.
We found distributed cortical regions showing significant modulations in
their functional connectivity and integration under L-dopa compared to
placebo (Fig. 4A).

These modulations were found in both directions, i.e., L-dopa> pla-
cebo and L-dopa< placebo. More precisely, under L-dopa relative to
placebo, regions overlapping mainly with paracentral lobule and pre-
cuneus underwent a relative hyper-connectivity (Fig. 4A first panel,
warm regions; Fig. 4B, red connections). The most consistent pattern
pointed to both hypo-connectivity and hypo-integration under L-dopa
Fig. 4. Cortical regions exhibiting functional connectome
modulations under L-dopa. (A) Nodal network metrics of
cortical regions were compared between L-dopa and placebo
using bootstrap procedures with 10,000 replications of group
average differences (Δ : L-dopa–placebo). The significance of
the differences was inferred based on the FCR-correction
method accounting for multiple comparisons (p< 0.05).
Functional connectivity and network integration were
significantly increased (warm regions) or decreased (cold
regions) under L-dopa in contrast to placebo, with predomi-
nant hypo-integration of temporal and cingulo-opercular re-
gions (cold regions). (B) Visualization of the topological
reorganization of the functional connectome under L-dopa
versus placebo. Orange links in the left panel represent pu-
tative functional connections engaged during the auditory
working memory task under both placebo and L-dopa. A
number of disintegrated nodes were consistently present
under both placebo and L-dopa, mainly within the left and
right temporal cortices (orange nodes). Blue links in the right
panel represent functional connections which exist under
placebo only. Red links represent functional connections
which exist under L-dopa only. Compared to the core network
(left panel), the functional connectome displayed an addi-
tional set of disintegrated nodes under L-dopa in temporal and
cingulo-opercular regions (red nodes) but not under placebo
(no blue node). Functionally disintegrated nodes were iden-
tified as nodes having a degree of zero. Group-average net-
works were constructed by thresholding the mean functional
connectivity maps (network density set to 5% for better
visualization). See Fig. S2 for a thorough investigation of
graph thresholding.



Fig. 5. Cortical regions where modulation of the functional
connectome correlated with modulations in task perfor-
mance. Modulation of nodal connectivity in bilateral superior
temporal/angular gyri and anterior cingulate (left panel, red
circles) under L-dopa positively correlated with the change in
response speed during the auditory working memory task (Δ :

L-dopa–placebo). Additionally, lower nodal network effi-
ciency of a brain node within the right frontal operculum/
insula (right panel, blue circle) under L-dopa correlated with
higher perceptual sensitivity d’. The correlation at each re-
gion was tested using a bootstrap procedure for Spearman's
rho (10,000 replications). Circles highlight the regions that
survived FCR correction (p< 0.05). Colored regions without
circles are visualized at the uncorrected level.

M. Alavash et al. NeuroImage 172 (2018) 341–356
within temporal and cingulo-opercular regions (Fig. 4A, cold regions;
Fig. 4B, red nodes). In particular, nodal connectivity and nodal degree of
cortical regions mostly in the inferior division of temporal cortex as well
as frontal operculum were decreased under L-dopa relative to placebo
(Fig. 4A, first row). In addition, nodal network efficiency of regions
within the inferior portion of temporal cortex, anterior cingulate and
frontal operculum was significantly lower under L-dopa than placebo.
These findings were further supported by the existence of higher number
of disintegrated nodes under L-dopa versus placebo (Fig. 4B, red nodes).
Similar results were found when a functional parcellation was used to
construct the brain graphs (Fig. S8).

Next, we tested the correlation between regional modulation (i.e., L-
dopa–placebo) of the functional connectome and modulations in
behavioral performances. We found significant correlations between
modulations of behavioral performances and modulations of nodal con-
nectivity and nodal efficiency (Fig. 5). Consistent with the correlations
observed on the whole-brain level (Fig. 3B), participants who showed
increased nodal connectivity (i.e., hyper-connectivity) in bilateral supe-
rior temporal/angular gyri and anterior cingulate under L-dopa, also
responded faster under L-dopa (Fig. 5, left, red circles). Moreover,
decreased nodal network efficiency (i.e., hypo-integration) of a brain
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node within the right frontal operculum/insula under L-dopa correlated
with higher behavioral gains in perceptual sensitivity (Fig. 5, right, blue
circle).

Relationship between modulations in signal variability and modulations in
the functional connectome

Given that L-dopa significantly modulated BOLD signal variability and
network organization of the functional connectome, we further investi-
gated whether these modulations in cortical dynamics directly relate to
each other across participants. Specifically, we examined which cortical
regions exhibit a relationship between the modulation of their signal
variability under L-dopa (versus placebo) and the modulation in their
network configuration within the functional connectome under L-dopa
(versus placebo). We thus separately analyzed the correlations between
the modulations of three regional network metrics (i.e., nodal connec-
tivity, local network efficiency, and nodal network efficiency) and
modulation in signal variability across cortical regions.

Fig. 6 illustrates cortical regions exhibiting robust correlations be-
tween modulations in BOLD signal variability and regional network
metrics under L-dopa (versus placebo). Across participants, we found that
Fig. 6. Cortical regions exhibiting significant correlations
between the respective modulations of BOLD signal vari-
ability and the functional connectome under L-dopa. The
extent of L-dopa-induced modulation (Δ : L-dopa–placebo) of
signal variability showed predominantly positive correlations
to that of nodal connectivity (top), local network efficiency
(bottom, left) and nodal network efficiency (bottom, right)
across participants. The significance of the correlations is
inferred based on the FCR correction accounting for multiple
comparisons (p< 0.05).
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the extent of L-dopa-induced changes in BOLD signal variability posi-
tively correlated with the extent of nodal connectivity changes in broadly
distributed cortical regions, spanning temporal, cingulate, frontal, and
parietal cortices (Fig. 6, top).

Interestingly, L-dopa-related modulation of BOLD signal variability
correlated with the extent of modulation in individuals' brain network
efficiency, both on local and global scales of topology. Specifically,
network efficiency within each node's neighborhood graph (i.e., local
efficiency) as well as its functional integration to the whole-brain graph
(i.e., nodal efficiency) significantly correlated with BOLD signal vari-
ability in distributed cortical regions. Increased signal variability spe-
cifically in temporal, left inferior frontal, cingulate, as well as insula
cortices correlated with higher network efficiency in similar regions
(Fig. 6, bottom). Notable exceptions were visual areas (within the oc-
cipital and inferior temporal cortices), which showed negative correla-
tions between modulations in BOLD signal variability and network
efficiency.

Modulation of cortico-striatal connectivity

Knowing that the midbrain dopaminergic system innervates striatal
and cortical networks (Jaber et al., 1996; Seger and Miller, 2010; Frank,
2011), we further investigated two follow-up questions. First, we asked
which striatal structure would show a significant modulation in its
functional connectivity with the cortical network under L-dopa relative to
placebo. Second, and more specifically, we asked which cortical nodes
would show modulation in their functional connectivity with the striatal
structure(s). To address these questions, we used a functional parcella-
tion of the striatum with seven seed regions (Choi et al., 2012) from
which we extracted their mean hemodynamic signals (wavelet scale 2:
0.06–0.12 Hz), and computed their respective correlation strengths with
all cortical nodes. Finally, to capture the strongest correlations, the top
25% strongest connections were selected and averaged per striatal seed
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(mean nodal connectivity; similar to Choi et al. (2012)). Prior to the
correlation analysis, and in order to account for physical proximity of the
striatum to the insula and orbital frontal cortices, we regressed out the
mean signal of the cortical voxels that were up to 9mm away from the
left and right putamen (similar to Choi et al. (2012)).

We found that, under L-dopa relative to placebo, a striatal seed region
in the posterior ventral putamen showed higher nodal connectivity with
the cortical network (p< 0.05; Fig. 7A). This region included ten
2� 2� 2-mm striatal voxels, which were mainly within the right stria-
tum (MNI slice coordinates: coronal y¼�18, axial z¼�6). A similar
result was found when the cortical nodes were defined based on the
functional parcellation (Cohen's d¼ 0.67; p< 0.05, FCR-corrected) or
when different connectivity thresholds were used in the range 5%–30%
in steps of 5%. However, the correlation between this modulation and the
modulation in behavior was not significant (d’: rho¼ 0.16, p¼ 0.47;
response speed: rho¼ 0.26, p¼ 0.24).

Subsequently, to map the cortical consequence of the posterior pu-
tamen hyper-connectivity under L-dopa, we constructed the group-
averaged functional connectivity map between each cortical node and
the posterior putamen seed region by keeping the top 25% strongest
correlations. This procedure was done separately for each placebo and L-
dopa session. The resulting cortical map is shown in Fig. 7B. We observed
that cortical regions mostly overlapping with the supplementary motor
area, ventromedial prefrontal, as well as intraparietal lobule and bilateral
temporal cortices showed more extended functional connectivity with
the posterior putamen under L-dopa relative to placebo (Fig. 7B, red).

Discussion

How does dopaminemodulate large-scale cortical dynamics, and how
does this in turn relate to differences in cognitive performance among
individuals? We addressed this question by investigating the effect of L-
dopa on BOLD signal variability and the functional connectome while
Fig. 7. Modulation of striato-cortical functional connectivity
under L-dopa relative to placebo. (A) Hemodynamic signals
were extracted from seven striatal seed regions using a
functional parcellation, and their one-to-all cortical correla-
tion strengths were compared between L-dopa and placebo
using bootstrap procedures. A striatal seed region at the
posterior ventral putamen (shown in orange) displayed
higher nodal connectivity with the cortical network under L-
dopa in 17/22 participants (MNI slice coordinates: coronal
y¼�18, axial z¼�6). Scatter plots illustrate the degree and
direction of modulations (L-dopa versus placebo) for each
participant. Histograms show the distribution of the modu-
lations (L-dopa minus placebo) across all participants. (B)
Group-averaged functional connectivity map between each
cortical node and the posterior putamen seed region found in
(A) was constructed by keeping the top 25% strongest cor-
relations. The cortical regions which were functionally con-
nected with the posterior putamen are color-coded and
visualized separately for placebo, L-dopa or both.
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young healthy adults performed an auditory working memory task. We
examined L-dopa-induced modulations of brain dynamics and behavior
relative to placebo, and the relationships between these modulations
across participants.

Heterogeneity of L-dopa effects across individuals

In our sample, we did not observe a main effect of L-dopa on behav-
ioral performance, but a notably high inter-individual variability in
benefits from L-dopa. Previous accounts suggest that the absence of an
overall effect may be due to the well-known inverted U-shaped effect of
DA: Individuals' baseline levels of cognitive performance, endogenous
DA, and/or genetic variations in dopamine metabolism determine the
direction of L-dopa-related benefits/detriments (Goldman-Rakic et al.,
2000; Vijayraghavan et al., 2007; Cools and D'Esposito, 2011;
Pearson-Fuhrhop et al., 2013). Another source of variability is that
weight-dependent dosage may explain the degree of benefits from L-dopa
found in old participants (Chowdhury et al., 2012). Interestingly, how-
ever, the present study with a sample of young healthy participants does
not show any significant linear or quadratic trends related to the
weight-dependent L-dopa dosage on task performance. In parallel to the
previous accounts, our results provide new insights into the role of
dopamine in the context of working memory, and suggest that hetero-
geneity of L-dopa-induced effects might also arise from differences in
individuals' brain signal variability and functional network architecture,
as it is discussed in the following sections.

L-dopa increases BOLD signal variability

In our sample, L-dopa increased BOLD signal variability on the group
level. Notably, the individual extent and direction of this modulation
correlated with the behavioral benefit from L-dopa. Our findings lie in
parallel with recent studies emphasizing the importance of signal vari-
ability in predicting well-functioning cognitive operations (Garrett et al.,
2010; Grady and Garrett, 2014), and the role of DA in boosting BOLD
signal variability (Garrett et al., 2015), and further illustrates that DA
effects across individuals vary according to their baseline hemodynamic
signal variability.

Specifically, we found that L-dopa increased signal variability in
distributed cortical regions deemed relevant for the auditory working
memory task (see Fig. S7). These regions include bilateral superior
temporal cortices, often associated with auditory and speech perception
(Liebenthal et al., 2005; Obleser and Eisner, 2009). A similar effect was
also observed in the bilateral IFG, implicated in pitch and verbal pro-
cessing and working memory (e.g., Griffiths, 2001; Gaab et al., 2003;
Zatorre et al., 1994). A separate analysis of mean BOLD activation did not
reveal any region showing a significant difference between mean BOLD
activations under L-dopa versus placebo on the corrected level (Fig. S7).
These results indicate that BOLD signal variability reflects a different
aspect of neural computation as compared to event-related mean BOLD
activation.

Interestingly, distinct cortical regions appeared relevant in explaining
individuals' behavioral benefits from L-dopa. Our results show that loci of
signal variability modulations that correlated with response speed versus
d' gains are indeed different. Signal variability in motor and parietal re-
gions seems to underlie response speed gain, whereas L-dopa-induced
benefits in perceptual sensitivity were associated with signal variability
changes in parahippocampal area, where activity is related to episodic
memory/encoding (Amaral and Insausti, 1990; Davachi et al., 2003;
Chowdhury et al., 2012). As we have not observed speed–accuracy
trade-offs with the benefits from L-dopa (p¼ 0.90), it is a tenable hy-
pothesis that signal variability in distinct cortical regions contributes
complementarily to behavioral performance.

The current study is limited in that we only measured these BOLD
signal properties in response to L-dopa. But it is important to note that the
changes in signal variability due to L-dopa may reflect underlying
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complex changes in neurovascular coupling and brain metabolism: while
L-dopa administration enhances signal-to-noise ratio of neural activity
and increases cerebral blood flow (CBF), it decreases BOLD response
(Zaldivar et al., 2014).

L-dopa substantially modulates the functional connectome

During the auditory working memory task, L-dopa reduced the func-
tional integration across cortical regions on the group level. This hypo-
integration manifested at different topological scales, and overlapped
with temporal and cingulo-opercular regions. Since the brain graphs
were matched in network density across participants and sessions, this
hypo-integration cannot be due to network density differences (cf. van
den Heuvel et al., 2017). Further, the L-dopa-induced hyper-connectivity
and hypo-integration were consistent across a wide range of network
densities at different graph thresholds (Fig. S2). Disintegration of certain
nodes, mostly in temporal and cingulo-opercular regions, may be inter-
preted as diminished statistical dependency (co-activation or functional
cross-talk; not to be mistaken by anatomical disconnection) between
these and other cortical regions during auditory working memory pro-
cessing. Thus, this reorganization most likely stems from a functional
disintegration of temporal and cingulo-opercular nodes from regions less
relevant for the task (arguably the default mode network; see Gui-
tart-Masip et al., 2016; Nagano-Saito et al., 2017).

Note that we use the terms ‘integration’ and ‘disintegration’ within
the framework of graph theory. In a functional connectome and on the
global scale of network topology, for a brain graph to display greater
network integration (increased capacity for parallel processing), long
distance correlations are required. In sparsely connected functional net-
works (as in our case), short distance connections predominate, and are
typically associated with greater strength of connectivity (V�ertes et al.,
2012). Thus, increase in connectivity most likely would indicate forma-
tion of local neural processing (equivalently, lower functional integra-
tion, Rubinov and Sporns, 2010). As such, a network shifts from having a
globally-integrated topology to a more clustered and segregated topol-
ogy. In our data, however, we observed a significant decrease in global
efficiency, but also in local efficiency and modularity (see Fig. S10 for the
correlations across network metrics). Accordingly, the network reorga-
nization was not a functional shift toward higher segregation. We thus
investigated an alternative functional reorganization, namely nodal
disintegration, which could potentially attenuate all three topological
measures. Our analysis revealed significantly stronger nodal disintegra-
tion under L-dopa compared to placebo (Fig. S1).

Interestingly, the above hypo-integration correlated with L-dopa-
induced sensitivity benefits: participants with more pronounced hypo-
integration on both whole-brain and regional levels (right frontal oper-
culum/insula) showed higher d'. These correlations were specific to
network efficiency—a measure inversely related to topological distances,
which further supports the functional disintegration of task-relevant
regions.

Accordingly, L-dopa-induced hypo-integration might indicate a
functional shift of the temporal and cingulo-opercular regions from a
globally integrated state to a more autonomous engagement in task
processing. Previous work suggests that the cingulo-opercular network is
crucial for sustained attention (Dosenbach et al., 2006, 2007; Vaden
et al., 2013), homeostatic salience processing (Seeley et al., 2007), tonic
alertness (Sadaghiani and D'Esposito, 2015; Coste and Kleinschmidt,
2016) and dynamic coordination between the default mode network and
the central executive network (Menon and Uddin, 2010; Uddin, 2015).
Thus, the more autonomous state of this network can increase the
signal-to-noise ratio in cortical information processing, and help main-
tain to-be-attended (here, syllable pitch) information. The other poten-
tially relevant interpretation of L-dopa-induced network disintegration is
that L-dopa preferentially supports the phasic dopaminergic receptor
(D1) network state responsible for stable maintenance of representations
with high signal-to-noise ratio while suppressing the flexible network
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state (i.e., D2-state) that allows processing of distractor or task-irrelevant
neural activity (see Durstewitz and Seamans (2008) for computational
models). However, this possibility needs further testing as it is yet un-
clear whether and how overall increase of presynaptic dopamine levels
(i.e., via L-dopa) differentially activates D1-and D2-class receptors.

To further investigate whether the effects arise from task-related
neural dynamics or modulation of spontaneous activity (Ponce-Alvarez
et al., 2015; Bolt et al., 2017), we used a general linear model (GLM) with
finite impulse response (FIR) basis functions (0–22 s relative to trial
onset) to estimate task-related BOLD activity. Subsequently, the residual
data obtained from the GLMwas used for analyzing signal variability and
connectivity of spontaneous activity (Zhang and Li, 2010; Cole et al.,
2014; Alavash et al., 2015b; Finc et al., 2017; Bolt et al., 2017). This
analysis did not reveal any significant difference in signal variability or
network dynamics of spontaneous brain activity between placebo and
L-dopa. This result supports that, in our sample, L-dopa modulated
task-related cortical dynamics, thereby altering the signal variability and
the functional connectome of cortical regions engaged during the audi-
tory working memory task.

To date, only few studies have investigated the effect of DA on brain
networks, mostly focusing on resting-state or fronto-striatal functional
connectivity (Nagano-Saito et al., 2008; Kelly et al., 2009; Cole et al.,
2013; Bell et al., 2015). Our study, in contrast, focuses on large-scale
cortical interactions during a listening task with attention and memory
components. On the whole-brain level, we found an overall
hyper-connectivity under L-dopa. On the regional level, however, we
found that L-dopa decreased nodal connectivity of temporal and
cingulo-opercular regions (Fig. 4, cold regions and red nodes), whereas it
increased nodal connectivity of paracentral lobule and precuneus (Fig. 4,
red connections). This apparent inconsistency between the direction of
the global and regional results can be explained by network disintegra-
tion. We found that temporal and cingulo-opercular regions were func-
tionally disintegrated (Fig. 4B; red nodes) from the remaining of the
whole-brain network (Fig. 4B; red connections). The connected compo-
nent includes the paracentral/precuneus nodes, whose significant in-
crease in nodal connectivity contribute to the hyper-connectivity
observed on the whole-brain level. The disintegrated nodes, on the other
hand, do not contribute to whole-brain functional connectivity simply
due to the absence of connections (hypo-connectivity/-integration).
Thus, functional connectivity on the whole-brain level remained signif-
icantly higher under L-dopa relative to placebo, the extent of which
correlated with individuals' response speed gains from L-dopa.

Modulation of signal variability correlates with modulations of the
functional connectome

DA-driven modulation of signal variability showed significant posi-
tive correlations with modulations of nodal connectivity and network
efficiency mainly in temporal and anterior cingulate cortices known to be
crucial for listening behavior (Langers and Melcher, 2011; Erb et al.,
2013). One might associate these findings with the fact that connectivity
between two signals, expressed as their correlation, requires a certain
amount of variability. However, the present findings more likely reflect a
systematic relationship between two measures of cortical dynamics.
First, our findings point to the correlation between modulations (L-dopa
versus placebo) in two measures of brain dynamics rather than
within-session correlations. Second, regional network metrics are
multivariate measures: nodal connectivity is estimated as mean correla-
tion between a region's signal and its node-pairs’ signals, and nodal
network efficiency is estimated based on topological distances between a
given node and every other node in the network. Notably, for two
regional signals to show coherent fluctuations over time, not only vari-
ability (information) but also covariance (coordination) is necessary
(Carbonell et al., 2014; Cole et al., 2016). Thus, correlation between the
modulation in variability of a regional signal and the modulation in the
network wiring of the same region is most likely a systematic relation
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between two measures of cortical dynamics.
Furthermore, such systematic relationship in our data was supported

by the direct linear relationship between functional connectivity modu-
lation and signal variability modulation, which was only found to be
positive (Fig. 6A). Taken together, our study motivates the importance of
investigating both aspects of cortical dynamics—that is, signal variability
and connectivity—as two complementary measures.

These findings can be understood in terms of information-processing
capacity (McIntosh et al., 2008, 2014), and integration of information
across the functional connectome (Tononi et al., 1994, 1998; Sporns,
2003; Stam and van Straaten, 2012). Our findings are consistent with
previous studies reporting positive correlations between entropy of
resting-state EEG signals and nodal centrality and network efficiency
(Mi�si�c et al., 2010, 2011). Nodes conveying more information are char-
acterized by many connections and short/direct paths to the rest of the
network, thereby optimally ‘relaying’ local information across the con-
nectome (see Timme et al., 2016 for a recent evidence based on networks
of neural spikes). More recently, Garrett et al. (2017) showed that signal
variability of thalamic activity up-regulates the functional integration of
brain networks as measured by network dimensionality. Overall, our
findings suggest that L-dopa modulates cortical signal variability as well
as dynamic communication engaged in processing task-relevant infor-
mation, and the extent of these modulations can be a mechanistic
determinant of the often-observed inter-individual differences in
behavioral benefits from L-dopa.

L-dopa modulates posterior putamen cortical connectivity

Previous studies have emphasized the importance of striatal dopamine
in working memory (Frank et al., 2001; Cools et al., 2008; Landau et al.,
2009; Guitart-Masip et al., 2016), and even observed an opposite effect of
signal variability change with aging in cortical versus subcortical struc-
tures (e.g., Garrett et al., 2010). In our sample, we found that posterior
putamen cortical connectivity was significantly altered under L-dopa, with
17/22 participants showing a hyper-connectivity relative to placebo. Ac-
cording to Choi et al. (2012), the posterior ventral putamen represents the
dorsal attention network when functionally mapped onto the cortex. These
results thus provide insights into how striatum might contribute to our
findings, and suggest that L-dopa-driven hyper-connectivity of the func-
tional connectome is likely to arise, at least partly if not entirely, from
higher posterior putamen cortical modulation.

Conclusion

We showed that an increase of dopamine level while performing an
auditory working memory task modulated BOLD signal variability and
the functional connectome predominantly in temporal and cingulo-
opercular regions. Notably, the degree of these modulations predicted
inter-individual differences in behavioral benefit from L-dopa. The find-
ings thus provide insights on understanding the source of prominent
inter-individual differences of L-dopa effects on cognitive performance.
Our study fills a critical gap in knowledge regarding dopaminergic
modulation of univariate and multivariate aspects of cortical dynamics.
The data provide first evidence for a direct link between dopaminergic
modulation of BOLD signal variability and the functional connectome.
Dopamine thus appears to maintain the dynamic range of, and commu-
nication between, cortical systems involved in processing task-relevant
information during cognitive performance.
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