Categories
Auditory Neuroscience Auditory Perception EEG / MEG Papers Perception Uncategorized

New paper in press in elife: Waschke et al.

Oble­ser­lab senior PhD stu­dent Leo Waschke, along­side co-authors Sarah Tune and Jonas Obleser, has a new paper in eLife.

The pro­cess­ing of sen­so­ry infor­ma­tion from our envi­ron­ment is not con­stant but rather varies with changes in ongo­ing brain activ­i­ty, or brain states. Thus, also the acu­ity of per­cep­tu­al deci­sions depends on the brain state dur­ing which sen­so­ry infor­ma­tion is processed. Recent work in non-human ani­mals sug­gests two key process­es that shape brain states rel­e­vant for sen­so­ry pro­cess­ing and per­cep­tu­al per­for­mance. On the one hand, the momen­tary lev­el of neur­al desyn­chro­niza­tion in sen­so­ry cor­ti­cal areas has been shown to impact neur­al rep­re­sen­ta­tions of sen­so­ry input and relat­ed per­for­mance. On the oth­er hand, the cur­rent lev­el of arousal and relat­ed nora­dren­er­gic activ­i­ty has been linked to changes in sen­so­ry pro­cess­ing and per­cep­tu­al acuity.

How­ev­er, it is unclear at present, whether local neur­al desyn­chro­niza­tion and arousal pose dis­tinct brain states that entail vary­ing con­se­quences for sen­so­ry pro­cess­ing and behav­iour or if they rep­re­sent two inter­re­lat­ed man­i­fes­ta­tions of ongo­ing brain activ­i­ty and joint­ly affect behav­iour. Fur­ther­more, the exact shape of the rela­tion­ship between per­cep­tu­al per­for­mance and each of both brain states mark­ers (e.g. lin­ear vs. qua­drat­ic) is unclear at present.

In order to trans­fer find­ings from ani­mal phys­i­ol­o­gy to human cog­ni­tive neu­ro­science and test the exact shape of unique as well as shared influ­ences of local cor­ti­cal desyn­chro­niza­tion and glob­al arousal on sen­so­ry pro­cess­ing and per­cep­tu­al per­for­mance, we record­ed elec­troen­cephalog­ra­phy and pupil­lom­e­try in 25 human par­tic­i­pants while they per­formed a chal­leng­ing audi­to­ry dis­crim­i­na­tion task.

Impor­tant­ly, audi­to­ry stim­uli were selec­tive­ly pre­sent­ed dur­ing peri­ods of espe­cial­ly high or low audi­to­ry cor­ti­cal desyn­chro­niza­tion as approx­i­mat­ed by an infor­ma­tion the­o­ret­ic mea­sure of time-series com­plex­i­ty (weight­ed per­mu­ta­tion entropy). By means of a closed-loop real time set­up we were not only able to present stim­uli dur­ing dif­fer­ent desyn­chro­niza­tion states but also made sure to sam­ple the whole dis­tri­b­u­tion of such states, a pre­req­ui­site for the accu­rate assess­ment of brain-behav­iour rela­tion­ships. The record­ed pupil­lom­e­try data addi­tion­al­ly enabled us to draw infer­ences regard­ing the cur­rent lev­el of arousal due to the estab­lished link between nora­dren­er­gic activ­i­ty and pupil size.

 

Sin­gle tri­al analy­ses of EEG activ­i­ty, pupil­lom­e­try and behav­iour revealed clear­ly dis­so­cia­ble influ­ences of both brain state mark­ers on ongo­ing brain activ­i­ty, ear­ly sound-relat­ed activ­i­ty and behav­iour. High desyn­chro­niza­tion states were char­ac­ter­ized by a pro­nounced reduc­tion in oscil­la­to­ry pow­er across a wide fre­quen­cy range while high arousal states coin­cid­ed with a decrease in oscil­la­to­ry pow­er that was lim­it­ed to high fre­quen­cies. Sim­i­lar­ly, ear­ly sound-evoked activ­i­ty was dif­fer­en­tial­ly impact­ed by audi­to­ry cor­ti­cal desyn­chro­niza­tion and pupil-linked arousal. Phase-locked respons­es and evoked gam­ma pow­er increased with local desyn­chro­niza­tion with a ten­den­cy to sat­u­rate at inter­me­di­ate lev­els. Post-stim­u­lus low fre­quen­cy pow­er on the oth­er hand, increased with pupil-linked arousal.

Most impor­tant­ly, local desyn­chro­niza­tion and pupil-linked arousal dis­played dif­fer­ent rela­tion­ships with per­cep­tu­al per­for­mance. While par­tic­i­pants per­formed fastest and least biased fol­low­ing inter­me­di­ate lev­els of audi­to­ry cor­ti­cal desyn­chro­niza­tion, inter­me­di­ate lev­els of pupil-linked arousal were asso­ci­at­ed with high­est sen­si­tiv­i­ty. Thus, although both process­es pose behav­ioural­ly rel­e­vant brain states that affect per­cep­tu­al per­for­mance fol­low­ing an invert­ed u, they impact dis­tinct sub­do­mains of behav­iour. Tak­en togeth­er, our results speak to a mod­el in which inde­pen­dent states of local desyn­chro­niza­tion and glob­al arousal joint­ly shape states for opti­mal sen­so­ry pro­cess­ing and per­cep­tu­al per­for­mance. The pub­lished man­u­script includ­ing all sup­ple­men­tal infor­ma­tion can be found here.

Categories
Attention Auditory Neuroscience Neural Oscillations Papers Psychology Uncategorized

New paper in press in the Jour­nal of Neuroscience

Wöst­mann, Alavash and Obleser demon­strate that alpha oscil­la­tions in the human brain imple­ment dis­trac­tor sup­pres­sion inde­pen­dent of tar­get selection.

In the­o­ry, the abil­i­ty to selec­tive­ly focus on rel­e­vant objects in our envi­ron­ment bases on selec­tion of tar­gets and sup­pres­sion of dis­trac­tion. As it is unclear whether tar­get selec­tion and dis­trac­tor sup­pres­sion are inde­pen­dent, we designed an Elec­troen­cephalog­ra­phy (EEG) study to direct­ly con­trast these two processes.

Par­tic­i­pants per­formed a pitch dis­crim­i­na­tion task on a tone sequence pre­sent­ed at one loud­speak­er loca­tion while a dis­tract­ing tone sequence was pre­sent­ed at anoth­er loca­tion. When the dis­trac­tor was fixed in the front, atten­tion to upcom­ing tar­gets on the left ver­sus right side induced hemi­spher­ic lat­er­al­i­sa­tion of alpha pow­er with rel­a­tive­ly high­er pow­er ipsi- ver­sus con­tralat­er­al to the side of attention.

Crit­i­cal­ly, when the tar­get was fixed in front, sup­pres­sion of upcom­ing dis­trac­tors reversed the pat­tern of alpha lat­er­al­i­sa­tion, that is, alpha pow­er increased con­tralat­er­al to the dis­trac­tor and decreased ipsi­lat­er­al­ly. Since the two lat­er­al­ized alpha respons­es were uncor­re­lat­ed across par­tic­i­pants, they can be con­sid­ered large­ly inde­pen­dent cog­ni­tive mechanisms.

This was fur­ther sup­port­ed by the fact that alpha lat­er­al­i­sa­tion in response to dis­trac­tor sup­pres­sion orig­i­nat­ed in more ante­ri­or, frontal cor­ti­cal regions com­pared with tar­get selec­tion (see figure).

The paper is also avail­able as preprint here.

 

Categories
Attention Auditory Cortex Auditory Speech Processing EEG / MEG Psychology Speech

AC post­doc Malte Wöst­mann scores DFG grant to study the tem­po­ral dynam­ics of the audi­to­ry atten­tion­al filter

In this three-year project, we will use the audi­to­ry modal­i­ty as a test case to inves­ti­gate how the sup­pres­sion of dis­tract­ing infor­ma­tion (i.e., “fil­ter­ing”) is neu­ral­ly imple­ment­ed. While it is known that the atten­tion­al sam­pling of tar­gets (a) is rhyth­mic, (b) can be entrained, and © is mod­u­lat­ed by top-down pre­dic­tions, the exis­tence and neur­al imple­men­ta­tion of these mech­a­nisms for the sup­pres­sion of dis­trac­tors is at present unclear. To test this, we will use adap­ta­tions of estab­lished behav­iour­al par­a­digms of dis­trac­tor sup­pres­sion and record­ings of human elec­tro­phys­i­o­log­i­cal sig­nals in the Magen­to-/ Elec­troen­cephalo­gram (M/EEG).

Abstract of research project:

Back­ground: Goal-direct­ed behav­iour in tem­po­ral­ly dynam­ic envi­ron­ments requires to focus on rel­e­vant infor­ma­tion and to not get dis­tract­ed by irrel­e­vant infor­ma­tion. To achieve this, two cog­ni­tive process­es are nec­es­sary: On the one hand, atten­tion­al sam­pling of tar­get stim­uli has been focus of exten­sive research. On the oth­er hand, it is less well known how the human neur­al sys­tem exploits tem­po­ral infor­ma­tion in the stim­u­lus to fil­ter out dis­trac­tion. In the present project, we use the audi­to­ry modal­i­ty as a test case to study the tem­po­ral dynam­ics of atten­tion­al fil­ter­ing and its neur­al implementation.

Approach and gen­er­al hypoth­e­sis: In three vari­ants of the “Irrel­e­vant-Sound Task” we will manip­u­late tem­po­ral aspects of audi­to­ry dis­trac­tors. Behav­iour­al recall of tar­get stim­uli despite dis­trac­tion and respons­es in the elec­troen­cephalo­gram (EEG) will reflect the integri­ty and neur­al imple­men­ta­tion of the atten­tion­al fil­ter. In line with pre­lim­i­nary research, our gen­er­al hypoth­e­sis is that atten­tion­al fil­ter­ing bases on sim­i­lar but sign-reversed mech­a­nisms as atten­tion­al sam­pling: For instance, while atten­tion to rhyth­mic stim­uli increas­es neur­al sen­si­tiv­i­ty at time points of expect­ed tar­get occur­rence, fil­ter­ing of dis­trac­tors should instead decrease neur­al sen­si­tiv­i­ty at the time of expect­ed distraction.

Work pro­gramme: In each one of three Work Pack­ages (WPs), we will take as a mod­el an estab­lished neur­al mech­a­nism of atten­tion­al sam­pling and test the exis­tence and neur­al imple­men­ta­tion of a sim­i­lar mech­a­nism for atten­tion­al fil­ter­ing. This way, we will inves­ti­gate whether atten­tion­al fil­ter­ing fol­lows an intrin­sic rhythm (WP1), whether rhyth­mic dis­trac­tors can entrain atten­tion­al fil­ter­ing (WP2), and whether fore­knowl­edge about the time of dis­trac­tion induces top-down tun­ing of the atten­tion­al fil­ter in frontal cor­tex regions (WP3).

Objec­tives and rel­e­vance: The pri­ma­ry objec­tive of this research is to con­tribute to the foun­da­tion­al sci­ence on human selec­tive atten­tion, which requires a com­pre­hen­sive under­stand­ing of how the neur­al sys­tem achieves the task of fil­ter­ing out dis­trac­tion. Fur­ther­more, hear­ing dif­fi­cul­ties often base on dis­trac­tion by salient but irrel­e­vant sound. Results of this research will trans­late to the devel­op­ment of hear­ing aids that take into account neu­ro-cog­ni­tive mech­a­nisms to fil­ter out dis­trac­tion more efficiently.

Categories
Attention Auditory Cortex Auditory Neuroscience EEG / MEG Papers Perception Psychology Publications

New paper in Neu­roim­age by Fiedler et al.: Track­ing ignored speech matters

Lis­ten­ing requires selec­tive neur­al pro­cess­ing of the incom­ing sound mix­ture, which in humans is borne out by a sur­pris­ing­ly clean rep­re­sen­ta­tion of attend­ed-only speech in audi­to­ry cor­tex. How this neur­al selec­tiv­i­ty is achieved even at neg­a­tive sig­nal-to-noise ratios (SNR) remains unclear. We show that, under such con­di­tions, a late cor­ti­cal rep­re­sen­ta­tion (i.e., neur­al track­ing) of the ignored acoustic sig­nal is key to suc­cess­ful sep­a­ra­tion of attend­ed and dis­tract­ing talk­ers (i.e., neur­al selec­tiv­i­ty). We record­ed and mod­eled the elec­troen­cephalo­graph­ic response of 18 par­tic­i­pants who attend­ed to one of two simul­ta­ne­ous­ly pre­sent­ed sto­ries, while the SNR between the two talk­ers var­ied dynam­i­cal­ly between +6 and −6 dB. The neur­al track­ing showed an increas­ing ear­ly-to-late atten­tion-biased selec­tiv­i­ty. Impor­tant­ly, acousti­cal­ly dom­i­nant (i.e., loud­er) ignored talk­ers were tracked neu­ral­ly by late involve­ment of fron­to-pari­etal regions, which con­tributed to enhanced neur­al selec­tiv­i­ty. This neur­al selec­tiv­i­ty, by way of rep­re­sent­ing the ignored talk­er, pos­es a mech­a­nis­tic neur­al account of atten­tion under real-life acoustic conditions.

The paper is avail­able here.

Categories
Auditory Cortex EEG / MEG Papers Perception Publications

New paper in press in the Euro­pean Jour­nal of Neu­ro­science: Wöst­mann et al demon­strate that the pow­er of pres­tim­u­lus alpha oscil­la­tions direct­ly relates to con­fi­dence in pitch-discrimination

What is the mech­a­nis­tic rel­e­vance of neur­al alpha oscil­la­tions (~10 Hz) for per­cep­tion? To answer this ques­tion, we analysed EEG data from a task that required par­tic­i­pants to com­pare the pitch of two tones that were, unbe­knownst to par­tic­i­pants, iden­ti­cal. Impor­tant­ly, this task entire­ly removed poten­tial con­founds of vary­ing evi­dence in the stim­u­lus or vary­ing accu­ra­cy. We found that high­er pres­tim­u­lus alpha pow­er cor­re­lat­ed with low­er con­fi­dence in pitch dis­crim­i­na­tion. These results demon­strate that the rela­tion­ship of pres­tim­u­lus alpha pow­er and deci­sion con­fi­dence is direct in nature and, that it shows up in the audi­to­ry modal­i­ty sim­i­lar to what has been shown before in vision and somatosen­sa­tion. Our find­ings sup­port the view that low­er pres­tim­u­lus alpha pow­er enhances neur­al base­line excitability.

The paper is avail­able as preprint here.

Categories
Adaptive Control Auditory Cortex Auditory Neuroscience Auditory Working Memory Neural Oscillations Papers Perception Psychology Uncategorized

New paper in The Jour­nal of Neu­ro­science: Wilsch et al.., Tem­po­ral expec­ta­tion mod­u­lates the cor­ti­cal dynam­ics of short-term memory

Con­grat­u­la­tions to Oble­ser­lab alum­na Anna Wilsch, who is – for now – leav­ing acad­e­mia on a true high with her lat­est offer­ing on how tem­po­ral expec­ta­tions (“fore­knowl­edge” about when some­thing is to hap­pen) shape the neur­al make-up of memory!

Record­ed while the Oble­ser­lab was still in Leipzig at the Max Planck, and analysed with great input from our co-authors Mol­ly Hen­ry, Björn Her­rmann as well as Christoph Her­rmann (Old­en­burg), Anna used Mag­ne­toen­cephalog­ra­phy in an intri­cate but ulti­mate­ly very sim­ple sen­so­ry-mem­o­ry paradigm.

 

While sen­so­ry mem­o­ries of the phys­i­cal world fade quick­ly, Anna here shows that this decay of short-term mem­o­ry can be coun­ter­act­ed by tem­po­ral expectation.

Notably, spa­tial­ly dis­trib­uted cor­ti­cal pat­terns of alpha (8−−13 Hz) pow­er showed oppos­ing effects in audi­to­ry vs. visu­al sen­so­ry cor­tices. More­over, alpha-tuned con­nec­tiv­i­ty changes with­in supramodal atten­tion net­works reflect the allo­ca­tion of neur­al resources as short-term mem­o­ry rep­re­sen­ta­tions fade.

— to be updat­ed as the paper will become avail­able online –

Categories
Auditory Cortex Auditory Neuroscience Brain stimulation Clinical relevance Degraded Acoustics Hearing Loss Neural Oscillations Neural Phase Papers Psychology Speech

New paper in press with the Old­en­burg brain-stim­u­la­tion crew!

AC alum­na Anna Wilsch has a new paper in press in Neu­roim­age, with Toralf Neul­ing, Jonas Obleser, and Christoph Her­rmann: “Tran­scra­nial alter­nat­ing cur­rent stim­u­la­tion with speech envelopes mod­u­lates speech com­pre­hen­sion”. In this proof-of-concept–like paper, we demon­strate that using the speech enve­lope as a “pilot sig­nal” for elec­tri­cal­ly stim­u­lat­ing the human brain, while a lis­ten­er tries to com­pre­hend that speech sig­nal buried in noise, does mod­u­late the listener’s speech–in–noise com­pre­hen­sion abilities.

The Preprint is here, … 

… while the abstract goes like this:
Cor­ti­cal entrain­ment of the audi­to­ry cor­tex to the broad­band tem­po­ral enve­lope of a speech sig­nal is cru­cial for speech com­pre­hen­sion. Entrain­ment results in phas­es of high and low neur­al excitabil­i­ty, which struc­ture and decode the incom­ing speech sig­nal. Entrain­ment to speech is strongest in the theta fre­quen­cy range (4−8 Hz), the aver­age fre­quen­cy of the speech enve­lope. If a speech sig­nal is degrad­ed, entrain­ment to the speech enve­lope is weak­er and speech intel­li­gi­bil­i­ty declines. Besides per­cep­tu­al­ly evoked cor­ti­cal entrain­ment, tran­scra­nial alter­nat­ing cur­rent stim­u­la­tion (tACS) entrains neur­al oscil­la­tions by apply­ing an elec­tric sig­nal to the brain. Accord­ing­ly, tACS-induced entrain­ment in audi­to­ry cor­tex has been shown to improve audi­to­ry per­cep­tion. The aim of the cur­rent study was to mod­u­late speech intel­li­gi­bil­i­ty exter­nal­ly by means of tACS such that the elec­tric cur­rent cor­re­sponds to the enve­lope of the pre­sent­ed speech stream (i.e., enve­lope-tACS). Par­tic­i­pants per­formed the Old­en­burg sen­tence test with sen­tences pre­sent­ed in noise in com­bi­na­tion with enve­lope-tACS. Crit­i­cal­ly, tACS was induced at time lags of 0 to 250 ms in 50-ms steps rel­a­tive to sen­tence onset (audi­to­ry stim­uli were simul­ta­ne­ous to or pre­ced­ed tACS). We per­formed sin­gle- sub­ject sinu­soidal, lin­ear, and qua­drat­ic fits to the sen­tence com­pre­hen­sion per­for­mance across the time lags. We could show that the sinu­soidal fit described the mod­u­la­tion of sen­tence com­pre­hen­sion best. Impor­tant­ly, the aver­age fre­quen­cy of the sinu­soidal fit was 5.12 Hz, cor­re­spond­ing to the peaks of the ampli­tude spec­trum of the stim­u­lat­ed envelopes. This find­ing was sup­port­ed by a sig­nif­i­cant 5‑Hz peak in the aver­age pow­er spec­trum of indi­vid­ual per­for­mance time series. Alto­geth­er, enve­lope tACS mod­u­lates intel­li­gi­bil­i­ty of speech in noise, pre­sum­ably by enhanc­ing and dis­rupt­ing (time lag with in- or out-of-phase stim­u­la­tion, respec­tive­ly) cor­ti­cal entrain­ment to the speech enve­lope in audi­to­ry cortex.
Categories
Ageing Auditory Neuroscience EEG / MEG Papers Publications

New paper online by Waschke, Wöst­mann & Obleser

Read all about neur­al irreg­u­lar­i­ty in aging brains and how it relates to per­cep­tu­al deci­sions: New paper by PhD stu­dent Leo Waschke. 

Now avail­able online:
https://goo.gl/F4dFfe

Abstract

Sen­so­ry rep­re­sen­ta­tions, and thus human per­cepts, of the phys­i­cal world are sus­cep­ti­ble to fluc­tu­a­tions in brain state or “neur­al irreg­u­lar­i­ty”. Fur­ther­more, aging brains dis­play altered lev­els of neur­al irreg­u­lar­i­ty. We here show that a sin­gle, with­in-tri­al, infor­ma­tion-the­o­ret­ic mea­sure (weight­ed per­mu­ta­tion entropy) cap­tures neur­al irreg­u­lar­i­ty in the human elec­troen­cephalo­gram as a proxy for both, trait-like dif­fer­ences between indi­vid­u­als of vary­ing age, and state-like fluc­tu­a­tions that bias per­cep­tu­al deci­sions. First, the over­all lev­el of neur­al irreg­u­lar­i­ty increased with par­tic­i­pants’ age, par­al­leled by a decrease in vari­abil­i­ty over time, like­ly index­ing age-relat­ed changes at struc­tur­al and func­tion­al lev­els of brain activ­i­ty. Sec­ond, states of high­er neur­al irreg­u­lar­i­ty were asso­ci­at­ed with opti­mized sen­so­ry encod­ing and a sub­se­quent­ly increased prob­a­bil­i­ty of choos­ing the first of two phys­i­cal­ly iden­ti­cal stim­uli to be high­er in pitch. In sum, neur­al irreg­u­lar­i­ty not only char­ac­ter­izes behav­ioural­ly rel­e­vant brain states, but also can iden­ti­fy trait-like changes that come with age.