web analytics
Categories
Ageing Auditory Perception Degraded Acoustics EEG / MEG Hearing Loss Neural Oscillations Papers Perception Publications Speech

Strauß strikes again — fron­tiers in Human Neuroscience

It’s only a week ago that we updat­ed you about Antje’s lat­est pub­li­ca­tion at Neu­roIm­age. Today, there is a anoth­er one com­ing in; Antje’s, Mal­te’s & Jonas’ per­spec­tive arti­cle on cor­ti­cal alpha oscil­la­tions is in press at fron­tiers in HUMAN NEUROSCIENCE.

Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhibition

— Strauß, Wöst­mann & Obleser

See abstract
Lis­ten­ing to speech is often demand­ing because of sig­nal degra­da­tions and the pres­ence of dis­tract­ing sounds (i.e., “noise”). The ques­tion how the brain achieves the task of extract­ing only rel­e­vant infor­ma­tion from the mix­ture of sounds reach­ing the ear (i.e., “cock­tail par­ty prob­lem”) is still open. In anal­o­gy to recent find­ings in vision, we pro­pose cor­ti­cal alpha (~10 Hz) oscil­la­tions mea­sur­able using M/EEG as a piv­otal mech­a­nism to selec­tive­ly inhib­it the pro­cess­ing of noise to improve audi­to­ry selec­tive atten­tion to task-rel­e­vant sig­nals. We review ini­tial evi­dence of enhanced alpha activ­i­ty in selec­tive lis­ten­ing tasks, sug­gest­ing a sig­nif­i­cant role of alpha-mod­u­lat­ed noise sup­pres­sion in speech. We dis­cuss the impor­tance of dis­so­ci­at­ing between noise inter­fer­ence in the audi­to­ry periph­ery (i.e., ener­getic mask­ing) and noise inter­fer­ence with more cen­tral cog­ni­tive aspects of speech pro­cess­ing (i.e., infor­ma­tion­al mask­ing). Final­ly, we point out the adverse effects of age-relat­ed hear­ing loss and/or cog­ni­tive decline on audi­to­ry selec­tive inhi­bi­tion. With this per­spec­tive arti­cle, we set the stage for future stud­ies on the inhibito­ry role of alpha oscil­la­tions for speech pro­cess­ing in chal­leng­ing lis­ten­ing situations.

Ref­er­ences

  • Strauß A1, Wöst­mann M2, Obleser J1. Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhi­bi­tion. Front Hum Neu­rosci. 2014 May 28;8:350. PMID: 24904385. [Open with Read]
Categories
Auditory Perception Auditory Working Memory Events fMRI Neural Oscillations Neural Phase Posters

Come and find us at CNS 2014 in Boston this weekend

The Obleser lab will be pre­sent­ing four posters at this year’s Annu­al Meet­ing of the Cog­ni­tive Neu­ro­science Soci­ety in Boston.

If you hap­pen to be there, come check us out!

A125Hemo­dy­nam­ic sig­na­tures of (mis-)perceiving tem­po­ral change
Her­rmann, Bjoern

C63Tem­po­ral pre­dictabil­i­ty atten­u­ates decay in sen­so­ry memory
Wilsch, Anna

D54Stim­u­lus dis­crim­inabil­i­ty and pre­dic­tive­ness mod­u­late alpha oscil­la­tions in a per­cep­tu­al­ly demand­ing mem­o­ry task
Wöst­mann, Malte

D130Slow acoustic fluc­tu­a­tions entrain low-fre­quen­cy neur­al oscil­la­tions and deter­mine psy­choa­coustic performance
Hen­ry, Molly

Categories
Auditory Cortex Auditory Neuroscience Auditory Perception EEG / MEG Evoked Activity Papers Perception Publications

New paper in press: Her­rmann, Schlicht­ing, & Obleser, Jour­nal of Neuroscience

Björn Her­rmann has yet anoth­er paper in press in the Jour­nal of Neuroscience!

Dynam­ic Range Adap­ta­tion to Spec­tral Stim­u­lus Sta­tis­tics in Human Audi­to­ry Cortex

The paper is now avail­able online free of charge, and—funnily enough—appeared right on Jan­u­ary 1, 2014.

Screen Shot 2014-01-02 at 14.38.58

Ref­er­ences

  • Her­rmann B, Schlicht­ing N, Obleser J. Dynam­ic range adap­ta­tion to spec­tral stim­u­lus sta­tis­tics in human audi­to­ry cor­tex. J Neu­rosci. 2014 Jan 1;34(1):327–31. PMID: 24381293. [Open with Read]
Categories
Ageing Auditory Neuroscience Auditory Speech Processing Clinical relevance Degraded Acoustics Executive Functions fMRI Hearing Loss Noise-Vocoded Speech Papers Publications Speech

New paper in press: Erb & Obleser, Fron­tiers in Sys­tems Neuroscience

Julia Erb just got accept­ed the third study of her PhD project,

Upreg­u­la­tion of cog­ni­tive con­trol net­works in old­er adults’ speech comprehension

It will appear in Fron­tiers in Sys­tems Neu­ro­science soon.

The data are an exten­sion (in old­er adults) of Julia’s Jour­nal of Neu­ro­science paper ear­li­er this year.

Ref­er­ences

  • Erb J, Obleser J. Upreg­u­la­tion of cog­ni­tive con­trol net­works in old­er adults’ speech com­pre­hen­sion. Front Syst Neu­rosci. 2013 Dec 24;7:116. PMID: 24399939. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception Auditory Speech Processing EEG / MEG Neural Oscillations Neural Phase Papers Publications

New paper in press: Hen­ry & Obleser, PLOS ONE [Update]

Watch this space and the PLOS ONE web­site for a forth­com­ing arti­cle by Mol­ly Hen­ry and me;

Dis­so­cia­ble neur­al response sig­na­tures for slow ampli­tude and fre­quen­cy mod­u­la­tion in human audi­to­ry cortex

Hark­ing back at what we had argued ini­tial­ly in our 2012 Fron­tiers op’ed piece (togeth­er with Björn Her­rmann), Mol­ly presents neat evi­dence for dis­so­cia­ble cor­ti­cal sig­na­tures of slow ampli­tude ver­sus fre­quen­cy mod­u­la­tion. These cor­ti­cal sig­na­tures poten­tial­ly pro­vide an effi­cient means to dis­sect simul­ta­ne­ous­ly com­mu­ni­cat­ed slow tem­po­ral and spec­tral infor­ma­tion in acoustic com­mu­ni­ca­tion signals.

[Update]

Paper is avail­able here.

Ref­er­ences

  • Hen­ry MJ, Obleser J. Dis­so­cia­ble neur­al response sig­na­tures for slow ampli­tude and fre­quen­cy mod­u­la­tion in human audi­to­ry cor­tex. PLoS One. 2013 Oct 29;8(10):e78758. PMID: 24205309. [Open with Read]
Categories
Auditory Perception EEG / MEG Media Neural Oscillations Neural Phase Perception Publications

3sat fea­tures neur­al oscil­la­tions on TV

Ger­man pub­lic tele­vi­sion broad­cast­er 3sat fea­tured our research on neur­al oscil­la­tions (see our PNAS Paper) in its series nano .

Unfor­tu­nate­ly it’s only in Ger­man. How­ev­er, have fun watch­ing it:

[Update] If the embed­ded video is not work­ing for you, watch it on the 3sat web­site (Flash).

Ref­er­ences

  • Hen­ry MJ, Obleser J. Fre­quen­cy mod­u­la­tion entrains slow neur­al oscil­la­tions and opti­mizes human lis­ten­ing behav­ior. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20095–100. PMID: 23151506. [Open with Read]
Categories
Auditory Neuroscience Auditory Perception Degraded Acoustics Executive Functions Papers Publications

Lis­ten­ing: The strat­e­gy mat­ters [Update]

In press on Neuropsychologia

Thal­a­m­ic and pari­etal brain mor­phol­o­gy pre­dicts audi­to­ry cat­e­go­ry learning

figure_mat

Cat­e­go­riz­ing sounds is vital for adap­tive human behav­ior. Accord­ing­ly, chang­ing lis­ten­ing sit­u­a­tions (exter­nal noise, but also periph­er­al hear­ing loss in aging) require lis­ten­ers to flex­i­bly adjust their cat­e­go­riza­tion strate­gies, e.g., switch amongst avail­able acoustic cues. How­ev­er, lis­ten­ers dif­fer con­sid­er­ably in these adap­tive capa­bil­i­ties. For this rea­son, we employed vox­el-based mor­phom­e­try (VBM) in our study (Neu­ropsy­cholo­gia, In press), in order to assess the degree to which indi­vid­ual brain mor­phol­o­gy is pre­dic­tive of such adap­tive lis­ten­ing behavior.

Ref­er­ences

  • Scharinger M1, Hen­ry MJ2, Erb J2, Mey­er L3, Obleser J2. Thal­a­m­ic and pari­etal brain mor­phol­o­gy pre­dicts audi­to­ry cat­e­go­ry learn­ing. Neu­ropsy­cholo­gia. 2014 Jan;53:75–83. PMID: 24035788. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception EEG / MEG Neural Oscillations Neural Phase Papers Perception Publications

New paper in press: Her­rmann, Hen­ry, Grigutsch & Obleser, The Jour­nal of Neu­ro­science [Update]

Oscil­la­to­ry Phase Dynam­ics in Neur­al Entrain­ment Under­pin Illu­so­ry Per­cepts of Time

Nat­ur­al sounds like speech and music inher­ent­ly vary in tem­po over time. Yet, con­tex­tu­al fac­tors such as vari­a­tions in the sound’s loud­ness or pitch influ­ence per­cep­tion of tem­po­ral rate change towards slow­ing down or speed­ing up.

A new MEG study by Björn Her­rmann, Mol­ly Hen­ry, Maren Grigutsch and Jonas Obleser asked for the neur­al oscil­la­to­ry dynam­ics that under­pin con­text-induced illu­sions in tem­po­ral rate change and found illu­so­ry per­cepts to be linked to changes in the neur­al phase pat­terns of entrained oscil­la­tions while the exact fre­quen­cy of the oscil­la­to­ry response was relat­ed to veridi­cal percepts.

The paper is in press and forth­com­ing in The Jour­nal of Neuroscience.

 

Update:

Paper is avail­able online.

Ref­er­ences

  • Her­rmann B, Hen­ry MJ, Grigutsch M, Obleser J. Oscil­la­to­ry phase dynam­ics in neur­al entrain­ment under­pin illu­so­ry per­cepts of time. J Neu­rosci. 2013 Oct 2;33(40):15799–809. PMID: 24089487. [Open with Read]