web analytics
Categories
Ageing Auditory Cortex Auditory Neuroscience Clinical relevance Degraded Acoustics EEG / MEG Executive Functions Hearing Loss Neural Oscillations Papers Publications Speech

New paper in press in the Jour­nal of Neu­ro­science: Wöst­mann, Her­rmann, Wilsch, & Obleser [UPDATED #2]

Con­grat­u­la­tions to AC PhD stu­dent Malte Wöst­mann for his new­ly accept­ed paper in the Jour­nal of Neu­ro­science!

Wöst­mann M, Her­rmann B, Wilsch A, & Obleser J.

Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive benefits

J Neu­rosci, in press.

Here is the abstract and my favourite fig­ure from Malte’s paper.

Abstract
Speech com­pre­hen­sion in mul­ti-talk­er sit­u­a­tions is a noto­ri­ous real-life chal­lenge, par­tic­u­lar­ly for old­er lis­ten­ers. Younger lis­ten­ers exploit stim­u­lus-inher­ent acoustic detail, but are they also active­ly pre­dict­ing upcom­ing infor­ma­tion? And fur­ther, how do old­er lis­ten­ers deal with acoustic and pre­dic­tive infor­ma­tion? To under­stand the neur­al dynam­ics of lis­ten­ing dif­fi­cul­ties and accord­ing lis­ten­ing strate­gies, we con­trast­ed neur­al respons­es in the alpha-band (~10 Hz) in younger (20−30 years, n = 18) and healthy old­er (60−70 years, n = 20) par­tic­i­pants under chang­ing task demands in a two-talk­er par­a­digm. Elec­troen­cephalo­grams were record­ed while humans lis­tened to two spo­ken dig­its against a dis­tract­ing talk­er and decid­ed whether the sec­ond dig­it was small­er or larg­er. Acoustic detail (tem­po­ral fine struc­ture) and pre­dic­tive­ness (the degree to which the first dig­it pre­dict­ed the sec­ond) var­ied orthog­o­nal­ly. Alpha pow­er at wide­spread scalp sites decreased with increas­ing acoustic detail (dur­ing tar­get dig­it pre­sen­ta­tion) but also with increas­ing pre­dic­tive­ness (in-between tar­get dig­its). For old­er com­pared to younger lis­ten­ers, acoustic detail had a stronger impact on task per­for­mance and alpha pow­er mod­u­la­tion. This sug­gests that alpha dynam­ics plays an impor­tant role in the changes in lis­ten­ing behav­ior that occur with age. Last­ly, alpha pow­er vari­a­tions result­ing from stim­u­lus manip­u­la­tions (of acoustic detail and pre­dic­tive­ness) as well as task-inde­pen­dent over­all alpha pow­er were relat­ed to sub­jec­tive lis­ten­ing effort. The present data show that alpha dynam­ics is a promis­ing neur­al mark­er of indi­vid­ual dif­fi­cul­ties as well as age-relat­ed changes in sen­sa­tion, per­cep­tion, and com­pre­hen­sion in com­plex com­mu­ni­ca­tion situations. 

Screen Shot 2014-12-03 at 13.07.13

Update #2

Ger­man radio broad­cast­er MDR Info did an inter­view & fea­ture on Mal­te’s Exper­i­ment. Check out the stream below:

Ref­er­ences

  • Wöst­mann M1, Her­rmann B2, Wilsch A2, Obleser J3. Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive ben­e­fits. J Neu­rosci. 2015 Jan 28;35(4):1458–67. PMID: 25632123. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception EEG / MEG Neural Oscillations Neural Phase Papers Psychology

New paper in press: Hen­ry, Her­rmann, & Obleser in PNAS

Con­grat­u­la­tions to Audi­to­ry Cognition’s very own Mol­ly Hen­ry who, with Björn Her­rmann and Jonas Obleser, is about to pub­lish yet anoth­er PNAS paper:

Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands co-mod­u­late behavior

Hen­ry MJ, Her­rmann B, & Obleser J. PNAS, in press.

We are very excit­ed about this one, as it harks back to Molly’s 2012 PNAS paper yet ups the ante some­what: How do neur­al oscil­la­tions behave towards a more real­is­ti­cal­ly com­plex mix­ture of acoustic reg­u­lar­i­ties, and how does lis­ten­ing behav­iour change as a func­tion of var­i­ous neur­al entrained phases?

read a short sum­ma­ry here…
Our sen­so­ry envi­ron­ment is teem­ing with com­plex rhyth­mic struc­ture, but how do envi­ron­men­tal rhythms (like those present in speech or music) affect our per­cep­tion? In a human elec­troen­cephalog­ra­phy study, we inves­ti­gat­ed how audi­to­ry per­cep­tion is affect­ed when brain rhythms (neur­al oscil­la­tions) syn­chro­nize with the com­plex rhyth­mic struc­ture in syn­thet­ic sounds that pos­sessed rhyth­mic char­ac­ter­is­tics sim­i­lar to speech. We found that neur­al phase in mul­ti­ple fre­quen­cy bands syn­chro­nized to the com­plex stim­u­lus rhythm and inter­act­ed to deter­mine tar­get-detec­tion per­for­mance. Crit­i­cal­ly, the influ­ence of neur­al oscil­la­tions on tar­get-detec­tion per­for­mance was present only for fre­quen­cy bands syn­chro­nized with the rhyth­mic struc­ture of the stim­uli. Our results elu­ci­date how mul­ti­ple fre­quen­cy bands shape the effec­tive neur­al pro­cess­ing of envi­ron­men­tal stimuli.

Stay tuned until after PNAS embar­go has been lifted!

[UPDATE]

PNAS paper is online. Check it out here.

Ref­er­ences

  • Hen­ry MJ1, Her­rmann B2, Obleser J1. Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands comod­u­late behav­ior. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14935–40. PMID: 25267634. [Open with Read]
Categories
Ageing Auditory Perception Degraded Acoustics EEG / MEG Hearing Loss Neural Oscillations Papers Perception Publications Speech

Strauß strikes again — fron­tiers in Human Neuroscience

It’s only a week ago that we updat­ed you about Antje’s lat­est pub­li­ca­tion at Neu­roIm­age. Today, there is a anoth­er one com­ing in; Antje’s, Mal­te’s & Jonas’ per­spec­tive arti­cle on cor­ti­cal alpha oscil­la­tions is in press at fron­tiers in HUMAN NEUROSCIENCE.

Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhibition

— Strauß, Wöst­mann & Obleser

See abstract
Lis­ten­ing to speech is often demand­ing because of sig­nal degra­da­tions and the pres­ence of dis­tract­ing sounds (i.e., “noise”). The ques­tion how the brain achieves the task of extract­ing only rel­e­vant infor­ma­tion from the mix­ture of sounds reach­ing the ear (i.e., “cock­tail par­ty prob­lem”) is still open. In anal­o­gy to recent find­ings in vision, we pro­pose cor­ti­cal alpha (~10 Hz) oscil­la­tions mea­sur­able using M/EEG as a piv­otal mech­a­nism to selec­tive­ly inhib­it the pro­cess­ing of noise to improve audi­to­ry selec­tive atten­tion to task-rel­e­vant sig­nals. We review ini­tial evi­dence of enhanced alpha activ­i­ty in selec­tive lis­ten­ing tasks, sug­gest­ing a sig­nif­i­cant role of alpha-mod­u­lat­ed noise sup­pres­sion in speech. We dis­cuss the impor­tance of dis­so­ci­at­ing between noise inter­fer­ence in the audi­to­ry periph­ery (i.e., ener­getic mask­ing) and noise inter­fer­ence with more cen­tral cog­ni­tive aspects of speech pro­cess­ing (i.e., infor­ma­tion­al mask­ing). Final­ly, we point out the adverse effects of age-relat­ed hear­ing loss and/or cog­ni­tive decline on audi­to­ry selec­tive inhi­bi­tion. With this per­spec­tive arti­cle, we set the stage for future stud­ies on the inhibito­ry role of alpha oscil­la­tions for speech pro­cess­ing in chal­leng­ing lis­ten­ing situations.

Ref­er­ences

  • Strauß A1, Wöst­mann M2, Obleser J1. Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhi­bi­tion. Front Hum Neu­rosci. 2014 May 28;8:350. PMID: 24904385. [Open with Read]
Categories
EEG / MEG Linguistics Neural Oscillations Papers Publications

New paper out: Dis­so­ci­a­tion of alpha and theta oscil­la­tions Strauß, Kotz, Scharinger, Obleser

We are very hap­py to announce that PhD stu­dent Antje Strauß got her paper

Alpha and theta brain oscil­la­tions index dis­so­cia­ble process­es in spo­ken word recognition

accept­ed at Neu­roIm­age. Con­grat­u­la­tions! Find her paper here.

See the Abstract
Slow neur­al oscil­la­tions (∼ 1–15 Hz) are thought to orches­trate the neur­al process­es of spo­ken lan­guage com­pre­hen­sion. How­ev­er, func­tion­al sub­di­vi­sions with­in this broad range of fre­quen­cies are dis­put­ed, with most stud­ies hypoth­e­siz­ing only about sin­gle fre­quen­cy bands. The present study uti­lizes an estab­lished par­a­digm of spo­ken word recog­ni­tion (lex­i­cal deci­sion) to test the hypoth­e­sis that with­in the slow neur­al oscil­la­to­ry fre­quen­cy range, dis­tinct func­tion­al sig­na­tures and cor­ti­cal net­works can be iden­ti­fied at least for theta- (∼ 3–7 Hz) and alpha-fre­quen­cies (∼ 8–12 Hz). Lis­ten­ers per­formed an audi­to­ry lex­i­cal deci­sion task on a set of items that formed a word–pseudoword con­tin­u­um: rang­ing from (1) real words over (2) ambigu­ous pseu­do­words (devi­at­ing from real words only in one vow­el; com­pa­ra­ble to nat­ur­al mis­pro­nun­ci­a­tions in speech) to (3) pseu­do­words (clear­ly devi­at­ing from real words by ran­dom­ized syl­la­bles). By means of time–frequency analy­sis and spa­tial fil­ter­ing, we observed a dis­so­ci­a­tion into dis­tinct but simul­ta­ne­ous pat­terns of alpha pow­er sup­pres­sion and theta pow­er enhance­ment. Alpha exhib­it­ed a para­met­ric sup­pres­sion as items increas­ing­ly matched real words,in line with low­ered func­tion­al inhi­bi­tion in a left-dom­i­nant lex­i­cal pro­cess­ing net­work for more word-like input. Simul­ta­ne­ous­ly, theta pow­er in a bilat­er­al fron­to-tem­po­ral net­work was selec­tive­ly enhanced for ambigu­ous pseu­do­words only. Thus, enhanced alpha pow­er can neu­ral­ly “gate” lex­i­cal inte­gra­tion, while enhanced theta pow­er might index func­tion­al­ly more spe­cif­ic ambi­gu­i­ty-res­o­lu­tion process­es. To this end, a joint analy­sis of both fre­quen­cy bands pro­vides neur­al evi­dence for par­al­lel process­es in achiev­ing spo­ken word recognition.

Ref­er­ences

  • Strauβ A1, Kotz SA2, Scharinger M3, Obleser J3. Alpha and theta brain oscil­la­tions index dis­so­cia­ble process­es in spo­ken word recog­ni­tion. Neu­roim­age. 2014 Apr 18. PMID: 24747736. [Open with Read]
Categories
Auditory Perception Auditory Working Memory Events fMRI Neural Oscillations Neural Phase Posters

Come and find us at CNS 2014 in Boston this weekend

The Obleser lab will be pre­sent­ing four posters at this year’s Annu­al Meet­ing of the Cog­ni­tive Neu­ro­science Soci­ety in Boston.

If you hap­pen to be there, come check us out!

A125Hemo­dy­nam­ic sig­na­tures of (mis-)perceiving tem­po­ral change
Her­rmann, Bjoern

C63Tem­po­ral pre­dictabil­i­ty atten­u­ates decay in sen­so­ry memory
Wilsch, Anna

D54Stim­u­lus dis­crim­inabil­i­ty and pre­dic­tive­ness mod­u­late alpha oscil­la­tions in a per­cep­tu­al­ly demand­ing mem­o­ry task
Wöst­mann, Malte

D130Slow acoustic fluc­tu­a­tions entrain low-fre­quen­cy neur­al oscil­la­tions and deter­mine psy­choa­coustic performance
Hen­ry, Molly

Categories
Auditory Working Memory Degraded Acoustics EEG / MEG Executive Functions Neural Oscillations Papers Publications Speech

New Paper out: Wilsch, Hen­ry, Her­rmann et al.

Quite recent­ly Cere­bral Cor­tex published

Alpha Oscil­la­to­ry Dynam­ics Index Tem­po­ral Expec­ta­tion Ben­e­fits in Work­ing Memory

by Anna Wilsch, Mol­ly J Hen­ry, Björn Her­rmann, Burkhard Maess, and Jonas Obleser.

Check the abstract below or fol­low that link to get the full arti­cle.

Abstract
Enhanced alpha pow­er com­pared with a base­line can reflect states of increased cog­ni­tive load, for exam­ple, when lis­ten­ing to speech in noise. Can knowl­edge about “when” to lis­ten (tem­po­ral expec­ta­tions) poten­tial­ly coun­ter­act cog­ni­tive load and con­comi­tant­ly reduce alpha? The cur­rent mag­ne­toen­cephalog­ra­phy (MEG) exper­i­ment induced cog­ni­tive load using an audi­to­ry delayed-match­ing-to-sam­ple task with 2 syl­la­bles S1 and S2 pre­sent­ed in speech-shaped noise. Tem­po­ral expec­ta­tion about the occur­rence of S1 was manip­u­lat­ed in 3 dif­fer­ent cue con­di­tions: “Neu­tral” (unin­for­ma­tive about forepe­ri­od), “ear­ly-cued” (short forepe­ri­od), and “late-cued” (long forepe­ri­od). Alpha pow­er through­out the tri­al was high­est when the cue was unin­for­ma­tive about the onset time of S1 (neu­tral) and low­est for the late-cued con­di­tion. This alpha-reduc­ing effect of late com­pared with neu­tral cues was most evi­dent dur­ing mem­o­ry reten­tion in noise and orig­i­nat­ed pri­mar­i­ly in the right insu­la. More­over, indi­vid­ual alpha effects dur­ing reten­tion account­ed best for observed indi­vid­ual per­for­mance dif­fer­ences between late-cued and neu­tral con­di­tions, indi­cat­ing a trade­off between allo­ca­tion of neur­al resources and the ben­e­fits drawn from tem­po­ral cues. Over­all, the results indi­cate that tem­po­ral expec­ta­tions can facil­i­tate the encod­ing of speech in noise, and con­comi­tant­ly reduce neur­al mark­ers of cog­ni­tive load.

Ref­er­ences

  • Wilsch A, Hen­ry MJ, Her­rmann B, Maess B, Obleser J. Alpha Oscil­la­to­ry Dynam­ics Index Tem­po­ral Expec­ta­tion Ben­e­fits in Work­ing Mem­o­ry. Cereb Cor­tex. 2014 Jan 31. PMID: 24488943. [Open with Read]
Categories
EEG / MEG Neural Oscillations Perception Posters Publications

Col­in Cher­ry Award 2014 goes to Malte Wöstmann

On this years SPIN (Speech in Noise) work­shop in Mar­seille, our very own Malte Wöst­mann received the Col­in Cher­ry  Best Poster Award, elect­ed by work­shop attendees.

Judge for your­self and check out the Poster (PDF) here

Colin Cherry Award 2014 goes to Malte Wöstmann
Col­in Cher­ry Award 2014 goes to Malte Wöstmann
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception Auditory Speech Processing EEG / MEG Neural Oscillations Neural Phase Papers Publications

New paper in press: Hen­ry & Obleser, PLOS ONE [Update]

Watch this space and the PLOS ONE web­site for a forth­com­ing arti­cle by Mol­ly Hen­ry and me;

Dis­so­cia­ble neur­al response sig­na­tures for slow ampli­tude and fre­quen­cy mod­u­la­tion in human audi­to­ry cortex

Hark­ing back at what we had argued ini­tial­ly in our 2012 Fron­tiers op’ed piece (togeth­er with Björn Her­rmann), Mol­ly presents neat evi­dence for dis­so­cia­ble cor­ti­cal sig­na­tures of slow ampli­tude ver­sus fre­quen­cy mod­u­la­tion. These cor­ti­cal sig­na­tures poten­tial­ly pro­vide an effi­cient means to dis­sect simul­ta­ne­ous­ly com­mu­ni­cat­ed slow tem­po­ral and spec­tral infor­ma­tion in acoustic com­mu­ni­ca­tion signals.

[Update]

Paper is avail­able here.

Ref­er­ences

  • Hen­ry MJ, Obleser J. Dis­so­cia­ble neur­al response sig­na­tures for slow ampli­tude and fre­quen­cy mod­u­la­tion in human audi­to­ry cor­tex. PLoS One. 2013 Oct 29;8(10):e78758. PMID: 24205309. [Open with Read]