Here’s a brand new PhD training opportunity, @dfg_public-funded, joint project of @ObleserLab at @UniLuebeck Germany, supervised by me, with star collaborator @GesaHartwigsen (@MPI_CBS) — starting next spring. Please be in touch. Please distribute widely. https://t.co/oTUEVVgQSG pic.twitter.com/L4DtFaqRJl
— Jonas Obleser (@jonasobleser) October 19, 2021
Category: fMRI
Very excited to announce that former Obleser lab PhD student Lea-Maria Schmitt with her co-authors *) is now out in the Journal Science Advances with her new work, fusing artifical neural networks and functional MRI data, on timescales of prediction in natural language comprehension:
“Predicting speech from a cortical hierarchy of event-based time scales”
*) Lea-Maria Schmitt, Julia Erb, Sarah Tune, and Jonas Obleser from the Obleser lab / Lübeck side, and our collaborators Anna Rysop and Gesa Hartwigsen from Gesa’s Lise Meitner group at the Max Planck Institute in Leipzig. This research was made possible by the ERC and the DFG.
We are excited to share that former Obleserlab PhD student Leo Waschke, together with his new (Doug Garrett, Niels Kloosterman) and old (Jonas Obleser) lab has published an in-depth perspective piece in Neuron, with the provocative title “Behavior need neural variability”.
Our article is essentially a long and extensive tribute to the “second moment” of neural activity, in statistical terms, essentially: Variability — be it quantified as variance, entropy, or spectral slope — is the long-neglected twin of averages, and it holds great promise in understanding neural states (how does neural activity differ from one moment to the next?) and traits (how do individuals differ from each other?).
Congratulations, Leo!
Congratulations to Obleserlab postdoc Julia Erb for her new paper to appear in eLife, “Temporal selectivity declines in the aging human auditory cortex”.
It’s a trope that older listeners struggle more in comprehending speech (think of Professor Tournesol in the famous Tintin comics!). The neurobiology of why and how ageing and speech comprehension difficulties are linked at all has proven much more elusive, however.
Part of this lack of knowledge is directly rooted in our limited understanding of how the central parts of the hearing brain – auditory cortex, broadly speaking – are organized.
Does auditory cortex of older adults have different tuning properties? That is, do young and older adults differ in the way their auditory subfields represent certain features of sound?
A specific hypothesis following from this, derived from what is known about age-related change in neurobiological and psychological processes in general (the idea of so-called “dedifferentiation”), was that the tuning to certain features would “broaden” and thus lose selectivity in older compared to younger listeners.
More mechanistically, we aimed to not only observe so-called “cross-sectional” (i.e., age-group) differences, but to link a listener’s chronological age as closely as possible to changes in cortical tuning.
Amongst older listeners, we observe that temporal-rate selectivity declines with higher age. In line with senescent neural dedifferentiation more generally, our results highlight decreased selectivity to temporal information as a hallmark of the aging auditory cortex.
This research is generously supported by the ERC Consolidator project AUDADAPT, and data for this study were acquired at the CBBM at University of Lübeck.
Congratulations to our currently ERC-funded lab member and postdoc Mohsen Alavash who has just secured 3‑year funding (~380,000 €) by the Deutsche Forschungsgemeinschaft (DFG) for an ambitious project: Mohsen wants to get closer to a network/graph-theoretical description of how spatial attention in the listening brain is organised. In a later stage of the project, Mohsen also plans on studying how the network organisation of spatial attention may be altered in hearing-impaired listeners.
We are glad that Mohsen plans on running this project within the Obleser lab, here at the University of Lübeck.
Also, make sure to check out Mohsen’s latest publication on the topic.
How brain areas communicate shapes human communication: The hearing regions in your brain form new alliances as you try to listen at the cocktail party
Obleserlab Postdocs Mohsen Alavash and Sarah Tune rock out an intricate graph-theoretical account of modular reconfigurations in challenging listening situations, and how these predict individuals’ listening success.
Available online now in PNAS! (Also, our uni is currently featuring a German-language press release on it, as well as an English-language version)
In a new comparative fMRI study just published in Cerebral Cortex, AC postdoc Julia Erb and her collaborators in the Formisano (Maastricht University) and Vanduffel labs (KU Leuven) provide us with novel insights into speech evolution. These data by Erb et al. reveal homologies and differences in natural sound-encoding in human and non-human primate cortex.
From the Abstract: “Understanding homologies and differences in auditory cortical processing in human and nonhuman primates is an essential step in elucidating the neurobiology of speech and language. Using fMRI responses to natural sounds, we investigated the representation of multiple acoustic features in auditory cortex of awake macaques and humans. Comparative analyses revealed homologous large-scale topographies not only for frequency but also for temporal and spectral modulations. Conversely, we observed a striking interspecies difference in cortical sensitivity to temporal modulations: While decoding from macaque auditory cortex was most accurate at fast rates (> 30 Hz), humans had highest sensitivity to ~3 Hz, a relevant rate for speech analysis. These findings suggest that characteristic tuning of human auditory cortex to slow temporal modulations is unique and may have emerged as a critical step in the evolution of speech and language.”
The paper is available here. Congratulations, Julia!
Obleserlab postdoc Mohsen Alavash and Obleserlab Alumna Sung-Joo Lim are in press at Neuroimage!
They argue with data from a placebo-controlled dopaminergic intervention study that BOLD signal variability and the functional connectome are surprisingly clearly affected by L‑Dopa, and (ii) that the degree of change in these metrics can explain the degree to which individuals will profit from L‑DOPA in performing the challenging listening task (while others dont; Preprint here ).
Alavash, M., Lim, S.J., Thiel, C., Sehm, B., Deserno, L., & Obleser, J. (2018) Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage. In press.
— Thanks also and in particular to our colleagues Christiane Thiel of Oldenburg, and Bernhard Sehm and Lorenz Deserno of Leipzig, who helped us made this large-scale L‑DOPA project happen!