web analytics
Categories
Auditory Speech Processing Degraded Acoustics EEG / MEG Neural Oscillations Noise-Vocoded Speech Papers Publications Speech

New paper accept­ed in Cere­bral Cor­tex [Update]

Obleser, J., Weisz, N. (in press) Sup­pressed alpha oscil­la­tions pre­dict intel­li­gi­bil­i­ty of speech and its acoustic details. Cere­bral Cortex.

[Update]

Paper is avail­able here.

Ref­er­ences

  • Obleser J, Weisz N. Sup­pressed alpha oscil­la­tions pre­dict intel­li­gi­bil­i­ty of speech and its acoustic details. Cereb Cor­tex. 2012 Nov;22(11):2466–77. PMID: 22100354. [Open with Read]
Categories
Auditory Cortex Auditory Speech Processing EEG / MEG Evoked Activity Linguistics Papers Place of Articulation Features Publications

Paper in press: Are labi­als special?

This went online just a day before Christmas:

Neu­ro­mag­net­ic evi­dence for a fea­t­ur­al dis­tinc­tion of Eng­lish con­so­nants: Sen­sor- and source-space data

by Math­ias Scharinger, Jen­nifer Mer­ick­el, Joshua Riley, and William Idsardi
http://dx.doi.org/10.1016/j.bandl.2010.11.002

We want­ed to look at fea­t­ur­al (cat­e­gor­i­cal) place of artic­u­la­tion dis­tinc­tions in Eng­lish con­so­nants, and select­ed labi­al and coro­nal frica­tives and glides for an MMN study. In this study, we looked at sen­sor- and source-space effects of labi­al deviants pre­ced­ed by coro­nal stan­dards and coro­nal deviants pre­ced­ed by labi­al stan­dards, across the two man­ners of artic­u­la­tion, i.e. frica­tives and glides. Note that there are rather dra­mat­ic acoustic dif­fer­ences between these man­ners of artic­u­la­tion: uncor­re­lat­ed noise through nar­row con­stric­tion vs. vow­el-like sound with typ­i­cal res­o­nance fre­quen­cies. We found con­sis­tent place-of-artic­u­la­tion effects, inde­pen­dent of man­ner of artic­u­la­tion: labi­al deviants pro­duced larg­er MMN, con­tra a direc­tion­al hypoth­e­sis of under­spec­i­fi­ca­tion, and dipole source loca­tions fol­lowed the Obleser-gra­di­ent in that labi­als elicit­ed N1m dipoles ante­ri­or to dipoles of coro­nals in audi­to­ry cortex.

Ref­er­ences

  • Scharinger M, Mer­ick­el J, Riley J, Idsar­di WJ. Neu­ro­mag­net­ic evi­dence for a fea­t­ur­al dis­tinc­tion of Eng­lish con­so­nants: sen­sor- and source-space data. Brain Lang. 2011 Feb;116(2):71–82. PMID: 21185073. [Open with Read]
Categories
Auditory Neuroscience Auditory Speech Processing EEG / MEG Linguistics Papers Psychology Publications Speech

New paper out: Are ear­ly N100 and the late Gam­ma-band response neg­a­tive­ly cor­re­lat­ed in com­pre­hen­sion of degrad­ed speech?

Late 2010 was par­tic­u­lar­ly good to us:

Mul­ti­ple brain sig­na­tures of inte­gra­tion in the com­pre­hen­sion of degrad­ed speech

by Jonas Obleser and Son­ja Kotz, in Neu­roIm­age.

The final pdf will hope­ful­ly be avail­able online very soon. Mean­while the fig­ure below cap­tures our main results:

Ref­er­ences

  • Obleser J, Kotz SA. Mul­ti­ple brain sig­na­tures of inte­gra­tion in the com­pre­hen­sion of degrad­ed speech. Neu­roim­age. 2011 Mar 15;55(2):713–23. PMID: 21172443. [Open with Read]
Categories
Auditory Neuroscience Auditory Speech Processing Degraded Acoustics Events fMRI Noise-Vocoded Speech Papers Publications

Talk at the Soci­ety for Neu­ro­science Meet­ing, Wash­ing­ton, DC on Wednesday

If you hap­pen to be at SfN this week, you might want to check out my short pre­sen­ta­tion on a recent study [1] we did: What do spec­tral (fre­quen­cy-domain) and tem­po­ral (time-domain) fea­tures real­ly con­tribute to speech com­pre­hen­sion process­es in the tem­po­ral lobes?

It is in the Audi­to­ry Cor­tex Ses­sion (710), tak­ing place in Room 145B. My talk is sched­uled for 0945 am.

[1] Obleser, J., Eis­ner, F., Kotz, S.A. (2008) Bilat­er­al speech com­pre­hen­sion reflects dif­fer­en­tial sen­si­tiv­i­ty to spec­tral and tem­po­ral fea­tures. Jour­nal of Neu­ro­science, 28(32):8116–8124.

Ref­er­ences

  • Obleser J, Eis­ner F, Kotz SA. Bilat­er­al speech com­pre­hen­sion reflects dif­fer­en­tial sen­si­tiv­i­ty to spec­tral and tem­po­ral fea­tures. J Neu­rosci. 2008 Aug 6;28(32):8116–23. PMID: 18685036. [Open with Read]