web analytics
Categories
EEG / MEG Neural Oscillations Neural Phase Papers Publications

New Paper out in Psy­chophys­i­ol­o­gy — Wilsch et al.

A new paper on

Slow-delta phase con­cen­tra­tion marks improved tem­po­ral expec­ta­tions based on the pas­sage of time

by AC PhD Anna Wilsch, alum­ni post­docs Mol­ly Hen­ry & Björn Her­rmann, AC head Jonas Obleser along with Burkhard Maess appeared in Psychophysiology.

Check the online source, or take a quick look on the abstract below.

Abstract
Tem­po­ral expec­ta­tions enhance neur­al encod­ing pre­ci­sion, reflect­ed in opti­mized align­ment of slow neur­al oscil­la­to­ry phase, and facil­i­tate sub­se­quent stim­u­lus pro­cess­ing. If an even­t’s exact occur­rence time is unknown, tem­po­ral expec­ta­tions arise sole­ly from the pas­sage of time. Here, we show that this spe­cif­ic type of tem­po­ral expec­ta­tion is also reflect­ed in neur­al phase orga­ni­za­tion. While under­go­ing mag­ne­toen­cephalog­ra­phy, par­tic­i­pants per­formed an audi­to­ry-delayed match­ing-to-sam­ple task with two syl­la­bles (S1, S2). Crit­i­cal­ly, S1-onset time var­ied in the 0.6–1.8‑s (i.e., 0.6−1.7 Hz) range. Increas­ing S1-onset times led to increased slow-delta (0.6−0.9 Hz) phase coher­ence over right fron­totem­po­ral sen­sors dur­ing S1 encod­ing. More­over, indi­vid­u­als with high­er slow-delta coher­ence showed decreased alpha pow­er (8−13 Hz) dur­ing sub­se­quent mem­o­ry reten­tion. In sum, tem­po­ral expec­ta­tions based on the pas­sage of time opti­mize the pre­cise align­ment of neur­al oscil­la­to­ry phase with an expect­ed stimulus.

Ref­er­ences

  • Wilsch A1, Hen­ry MJ, Her­rmann B, Maess B, Obleser J. Slow-delta phase con­cen­tra­tion marks improved tem­po­ral expec­ta­tions based on the pas­sage of time. Psy­chophys­i­ol­o­gy. 2015 Feb 16. PMID: 25684032. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Clinical relevance Degraded Acoustics EEG / MEG Executive Functions Hearing Loss Media Neural Oscillations Papers Publications Speech

Max Planck Soci­ety reports on Wöst­mann et al.’s Neur­al alpha dynamics

Some days ago the Max Planck Soci­ety put out a news fea­ture on our most recent Jour­nal of Neu­ro­science paper (see our post):

Aufmerk­sam zuhören — Hirn-Wellen zeigen Mühen des Hörens im Alter an

Sum­ma­ry
Ältere Men­schen kla­gen oft über Hörschwierigkeit­en, beson­ders wenn mehrere Per­so­n­en durcheinan­der sprechen. Forsch­er am Max-Planck-Insti­tut für Kog­ni­tions- und Neu­rowis­senschaften in Leipzig haben her­aus­ge­fun­den, dass der Grund hier­für nicht nur im Ohr, son­dern eben­so in verän­derten Aufmerk­samkeit­sprozessen im Gehirn älter­er Men­schen zu find­en ist. Eine beson­dere Bedeu­tung kommt dabei den Alpha-Wellen zu, deren Anpas­sung an verän­derte Hör­si­t­u­a­tio­nen das Sprachver­ständ­nis in All­t­agssi­t­u­a­tio­nen verbessert.

It nice­ly wraps up Malte’s exper­i­ment on alpha dynam­ics in younger and old­er lis­ten­ers. Check the link above for the full arti­cle (Ger­man).

 

Ref­er­ences

  • Wöst­mann M1, Her­rmann B2, Wilsch A2, Obleser J3. Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive ben­e­fits. J Neu­rosci. 2015 Jan 28;35(4):1458–67. PMID: 25632123. [Open with Read]
Categories
Degraded Acoustics EEG / MEG Linguistics Neural Oscillations Neural Phase Papers Perception Publications Speech

New paper in press in the Jour­nal of Neu­ro­science: Strauß, Hen­ry, Scharinger, & Obleser

Con­grat­u­la­tions to just-grad­u­at­ed for­mer AC PhD stu­dent and fresh GIPSA/Grenoble Post­doc Antje Strauß, who today had the last data set from her PhD the­sis accept­ed as a paper in The Jour­nal of Neu­ro­science. We are all very happy!

The paper is enti­tled “Alpha phase deter­mines suc­cess­ful lex­i­cal deci­sion in noise” and con­tains arguably the first data set to extend prin­ci­ples of (alpha, 8–12 Hz) pre-stim­u­lus phase depen­dence from low-lev­el psy­chophysics to more com­plex lan­guage or cog­ni­tive process­es, here: lex­i­cal decision.

A big hel­lo to AC friend and col­league Niko Busch, by the way, whose bifur­ca­tion index mea­sure served our pur­pos­es very well here!

We will update accord­ing­ly, but mean­while, here is the abstract and my favourite fig­ure from the paper.

Abstract
Psy­chophys­i­cal tar­get detec­tion has been shown to be mod­u­lat­ed by slow oscil­la­to­ry brain phase. How­ev­er, thus far, only low-lev­el sen­so­ry stim­uli have been used as tar­gets. The cur­rent human elec­troen­cephalog­ra­phy study exam­ined the influ­ence of neur­al oscil­la­to­ry phase on a lex­i­cal-deci­sion task per­formed for stim­uli embed­ded in noise. Neur­al phase angles were com­pared for cor­rect ver­sus incor­rect lex­i­cal deci­sions using a phase bifur­ca­tion index, which quan­ti­fies dif­fer­ences in mean phase angles and phase con­cen­tra­tions between cor­rect and incor­rect tri­als. Neur­al phase angles in the alpha fre­quen­cy range (8–12 Hz) over right ante­ri­or sen­sors were approx­i­mate­ly anti-phase in a pre-stim­u­lus time win­dow, and thus suc­cess­ful­ly dis­tin­guished between cor­rect and incor­rect lex­i­cal deci­sions. More­over, alpha-band oscil­la­tions were again approx­i­mate­ly anti-phase across par­tic­i­pants for cor­rect ver­sus incor­rect tri­als dur­ing a lat­er peri-stim­u­lus time-win­dow (around 500 ms) at left-cen­tral elec­trodes. Strik­ing­ly, lex­i­cal deci­sion accu­ra­cy was not pre­dict­ed by either ERPs or oscil­la­to­ry pow­er mea­sures. We sug­gest that cor­rect lex­i­cal deci­sions depend both on suc­cess­ful sen­so­ry pro­cess­ing, which is made pos­si­ble by the align­ment of stim­u­lus onset with an opti­mal alpha phase, as well as inte­gra­tion and weight­ing of deci­sion­al infor­ma­tion, which is cou­pled to alpha phase imme­di­ate­ly fol­low­ing the crit­i­cal manip­u­la­tion that dif­fer­en­ti­at­ed words from pseu­do­words. The cur­rent study con­sti­tutes a first step towards char­ac­ter­iz­ing the role of dynam­ic oscil­la­to­ry brain states for high­er cog­ni­tive func­tions such as spo­ken word recognition.

Untitled copy

Categories
Editorial Notes EEG / MEG Grants Hearing Loss

New grant by the Oti­con Foundation

Our lab has been award­ed a 100,000 € (750,000 DKK) research grant by the Dan­ish Oti­con foun­da­tion.

Togeth­er with Thomas Lun­ner from the Erik­sholm Research Cen­tre, we will explore real-time neur­al (EEG) mea­sures and forms of neur­al hear­ing-aid control.

This work is con­ceived to sup­port and fur­ther devel­op our efforts fund­ed ear­li­er in 2014 by the Volk­swa­gen Foun­da­tion (from the “Exper­i­ment!” call for high-risk projects, 100,000 €).

Categories
Ageing Auditory Cortex Auditory Neuroscience Clinical relevance Degraded Acoustics EEG / MEG Executive Functions Hearing Loss Neural Oscillations Papers Publications Speech

New paper in press in the Jour­nal of Neu­ro­science: Wöst­mann, Her­rmann, Wilsch, & Obleser [UPDATED #2]

Con­grat­u­la­tions to AC PhD stu­dent Malte Wöst­mann for his new­ly accept­ed paper in the Jour­nal of Neu­ro­science!

Wöst­mann M, Her­rmann B, Wilsch A, & Obleser J.

Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive benefits

J Neu­rosci, in press.

Here is the abstract and my favourite fig­ure from Malte’s paper.

Abstract
Speech com­pre­hen­sion in mul­ti-talk­er sit­u­a­tions is a noto­ri­ous real-life chal­lenge, par­tic­u­lar­ly for old­er lis­ten­ers. Younger lis­ten­ers exploit stim­u­lus-inher­ent acoustic detail, but are they also active­ly pre­dict­ing upcom­ing infor­ma­tion? And fur­ther, how do old­er lis­ten­ers deal with acoustic and pre­dic­tive infor­ma­tion? To under­stand the neur­al dynam­ics of lis­ten­ing dif­fi­cul­ties and accord­ing lis­ten­ing strate­gies, we con­trast­ed neur­al respons­es in the alpha-band (~10 Hz) in younger (20−30 years, n = 18) and healthy old­er (60−70 years, n = 20) par­tic­i­pants under chang­ing task demands in a two-talk­er par­a­digm. Elec­troen­cephalo­grams were record­ed while humans lis­tened to two spo­ken dig­its against a dis­tract­ing talk­er and decid­ed whether the sec­ond dig­it was small­er or larg­er. Acoustic detail (tem­po­ral fine struc­ture) and pre­dic­tive­ness (the degree to which the first dig­it pre­dict­ed the sec­ond) var­ied orthog­o­nal­ly. Alpha pow­er at wide­spread scalp sites decreased with increas­ing acoustic detail (dur­ing tar­get dig­it pre­sen­ta­tion) but also with increas­ing pre­dic­tive­ness (in-between tar­get dig­its). For old­er com­pared to younger lis­ten­ers, acoustic detail had a stronger impact on task per­for­mance and alpha pow­er mod­u­la­tion. This sug­gests that alpha dynam­ics plays an impor­tant role in the changes in lis­ten­ing behav­ior that occur with age. Last­ly, alpha pow­er vari­a­tions result­ing from stim­u­lus manip­u­la­tions (of acoustic detail and pre­dic­tive­ness) as well as task-inde­pen­dent over­all alpha pow­er were relat­ed to sub­jec­tive lis­ten­ing effort. The present data show that alpha dynam­ics is a promis­ing neur­al mark­er of indi­vid­ual dif­fi­cul­ties as well as age-relat­ed changes in sen­sa­tion, per­cep­tion, and com­pre­hen­sion in com­plex com­mu­ni­ca­tion situations. 

Screen Shot 2014-12-03 at 13.07.13

Update #2

Ger­man radio broad­cast­er MDR Info did an inter­view & fea­ture on Mal­te’s Exper­i­ment. Check out the stream below:

Ref­er­ences

  • Wöst­mann M1, Her­rmann B2, Wilsch A2, Obleser J3. Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive ben­e­fits. J Neu­rosci. 2015 Jan 28;35(4):1458–67. PMID: 25632123. [Open with Read]
Categories
Ageing Auditory Cortex Auditory Neuroscience Auditory Perception Degraded Acoustics EEG / MEG Evoked Activity Hearing Loss Papers Psychology Publications Speech

New paper in press: Wöst­mann, Schröger, & Obleser in J Cogn Neurosci

Con­grat­u­la­tion to PhD stu­dent Malte Wöst­mann, who – with Erich Schröger and Jonas Obleser – has a new arti­cle in press at the Jour­nal of Cog­ni­tive Neuroscience

Acoustic detail guides atten­tion allo­ca­tion in a selec­tive lis­ten­ing task

forth­com­ing. We will update you accord­ing­ly as the paper comes online. We will share how­ev­er one of Malte’s fig­ures here as a teas­er: The paper utilis­es a very clas­sic com­po­nent of the evoked poten­tial, the con­tin­gent neg­a­tive vari­a­tion (the CNV; or a close rel­a­tive there­of, see the actu­al paper for dis­cus­sion) to study how old­er and younger lis­ten­ers allo­cate their atten­tion­al resources depend­ing on implic­it cues on to-be-expect­ed lis­ten­ing difficulties.

Screen Shot 2014-10-19 at 19.37.43

Ref­er­ences

  • Wöst­mann M1, Schröger E, Obleser J. Acoustic Detail Guides Atten­tion Allo­ca­tion in a Selec­tive Lis­ten­ing Task. J Cogn Neu­rosci. 2014 Nov 12:1–13. PMID: 25390200. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception EEG / MEG Neural Oscillations Neural Phase Papers Psychology

New paper in press: Hen­ry, Her­rmann, & Obleser in PNAS

Con­grat­u­la­tions to Audi­to­ry Cognition’s very own Mol­ly Hen­ry who, with Björn Her­rmann and Jonas Obleser, is about to pub­lish yet anoth­er PNAS paper:

Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands co-mod­u­late behavior

Hen­ry MJ, Her­rmann B, & Obleser J. PNAS, in press.

We are very excit­ed about this one, as it harks back to Molly’s 2012 PNAS paper yet ups the ante some­what: How do neur­al oscil­la­tions behave towards a more real­is­ti­cal­ly com­plex mix­ture of acoustic reg­u­lar­i­ties, and how does lis­ten­ing behav­iour change as a func­tion of var­i­ous neur­al entrained phases?

read a short sum­ma­ry here…
Our sen­so­ry envi­ron­ment is teem­ing with com­plex rhyth­mic struc­ture, but how do envi­ron­men­tal rhythms (like those present in speech or music) affect our per­cep­tion? In a human elec­troen­cephalog­ra­phy study, we inves­ti­gat­ed how audi­to­ry per­cep­tion is affect­ed when brain rhythms (neur­al oscil­la­tions) syn­chro­nize with the com­plex rhyth­mic struc­ture in syn­thet­ic sounds that pos­sessed rhyth­mic char­ac­ter­is­tics sim­i­lar to speech. We found that neur­al phase in mul­ti­ple fre­quen­cy bands syn­chro­nized to the com­plex stim­u­lus rhythm and inter­act­ed to deter­mine tar­get-detec­tion per­for­mance. Crit­i­cal­ly, the influ­ence of neur­al oscil­la­tions on tar­get-detec­tion per­for­mance was present only for fre­quen­cy bands syn­chro­nized with the rhyth­mic struc­ture of the stim­uli. Our results elu­ci­date how mul­ti­ple fre­quen­cy bands shape the effec­tive neur­al pro­cess­ing of envi­ron­men­tal stimuli.

Stay tuned until after PNAS embar­go has been lifted!

[UPDATE]

PNAS paper is online. Check it out here.

Ref­er­ences

  • Hen­ry MJ1, Her­rmann B2, Obleser J1. Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands comod­u­late behav­ior. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14935–40. PMID: 25267634. [Open with Read]
Categories
Degraded Acoustics EEG / MEG fMRI Linguistics Papers Publications

New paper out: Simul­ta­ne­ous fMRI–EEG in audi­to­ry cat­e­go­riza­tion by Scharinger et al.

Con­grat­u­la­tions to Obleser lab alum­nus Math­ias Scharinger who this week pub­lished our joint work on simul­ta­ne­ous fMRI–EEG in Fron­tiers in Human Neuroscience!

Simul­ta­ne­ous EEG-fMRI brain sig­na­tures of audi­to­ry cue utilization

by Scharinger, Her­rmann, Nier­haus, & Obleser

See abstract
Opti­mal uti­liza­tion of acoustic cues dur­ing audi­to­ry cat­e­go­riza­tion is a vital skill, par­tic­u­lar­ly when infor­ma­tive cues become occlud­ed or degrad­ed. Con­se­quent­ly, the acoustic envi­ron­ment requires flex­i­ble choos­ing and switch­ing amongst avail­able cues. The present study tar­gets the brain func­tions under­ly­ing such changes in cue uti­liza­tion. Par­tic­i­pants per­formed a cat­e­go­riza­tion task with imme­di­ate feed­back on acoustic stim­uli from two cat­e­gories that var­ied in dura­tion and spec­tral prop­er­ties, while we simul­ta­ne­ous­ly record­ed Blood Oxy­gena­tion Lev­el Depen­dent (BOLD) respons­es in fMRI and elec­troen­cephalo­grams (EEGs). In the first half of the exper­i­ment, cat­e­gories could be best dis­crim­i­nat­ed by spec­tral prop­er­ties. Halfway through the exper­i­ment, spec­tral degra­da­tion ren­dered the stim­u­lus dura­tion the more infor­ma­tive cue. Behav­ioral­ly, degra­da­tion decreased the like­li­hood of uti­liz­ing spec­tral cues. Spec­tral­ly degrad­ing the acoustic sig­nal led to increased alpha pow­er com­pared to non­de­grad­ed stim­uli. The EEG-informed fMRI analy­ses revealed that alpha pow­er cor­re­lat­ed with BOLD changes in infe­ri­or pari­etal cor­tex and right pos­te­ri­or supe­ri­or tem­po­ral gyrus (includ­ing planum tem­po­rale). In both areas, spec­tral degra­da­tion led to a weak­er cou­pling of BOLD response to behav­ioral uti­liza­tion of the spec­tral cue. These data pro­vide con­verg­ing evi­dence from behav­ioral mod­el­ing, elec­tro­phys­i­ol­o­gy, and hemo­dy­nam­ics that (a) increased alpha pow­er medi­ates the inhi­bi­tion of unin­for­ma­tive (here spec­tral) stim­u­lus fea­tures, and that (b) the pari­etal atten­tion net­work sup­ports opti­mal cue uti­liza­tion in audi­to­ry cat­e­go­riza­tion. The results high­light the com­plex cor­ti­cal pro­cess­ing of audi­to­ry cat­e­go­riza­tion under real­is­tic lis­ten­ing chal­lenges.

Ref­er­ences

  • Scharinger M1, Her­rmann B1, Nier­haus T2, Obleser J1. Simul­ta­ne­ous EEG-fMRI brain sig­na­tures of audi­to­ry cue uti­liza­tion. Front Neu­rosci. 2014 Jun 4;8:137. PMID: 24926232. [Open with Read]