web analytics
Categories
Ageing Auditory Cortex Auditory Neuroscience Clinical relevance Degraded Acoustics EEG / MEG Executive Functions Hearing Loss Neural Oscillations Papers Publications Speech

New paper in press in the Jour­nal of Neu­ro­science: Wöst­mann, Her­rmann, Wilsch, & Obleser [UPDATED #2]

Con­grat­u­la­tions to AC PhD stu­dent Malte Wöst­mann for his new­ly accept­ed paper in the Jour­nal of Neu­ro­science!

Wöst­mann M, Her­rmann B, Wilsch A, & Obleser J.

Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive benefits

J Neu­rosci, in press.

Here is the abstract and my favourite fig­ure from Malte’s paper.

Abstract
Speech com­pre­hen­sion in mul­ti-talk­er sit­u­a­tions is a noto­ri­ous real-life chal­lenge, par­tic­u­lar­ly for old­er lis­ten­ers. Younger lis­ten­ers exploit stim­u­lus-inher­ent acoustic detail, but are they also active­ly pre­dict­ing upcom­ing infor­ma­tion? And fur­ther, how do old­er lis­ten­ers deal with acoustic and pre­dic­tive infor­ma­tion? To under­stand the neur­al dynam­ics of lis­ten­ing dif­fi­cul­ties and accord­ing lis­ten­ing strate­gies, we con­trast­ed neur­al respons­es in the alpha-band (~10 Hz) in younger (20−30 years, n = 18) and healthy old­er (60−70 years, n = 20) par­tic­i­pants under chang­ing task demands in a two-talk­er par­a­digm. Elec­troen­cephalo­grams were record­ed while humans lis­tened to two spo­ken dig­its against a dis­tract­ing talk­er and decid­ed whether the sec­ond dig­it was small­er or larg­er. Acoustic detail (tem­po­ral fine struc­ture) and pre­dic­tive­ness (the degree to which the first dig­it pre­dict­ed the sec­ond) var­ied orthog­o­nal­ly. Alpha pow­er at wide­spread scalp sites decreased with increas­ing acoustic detail (dur­ing tar­get dig­it pre­sen­ta­tion) but also with increas­ing pre­dic­tive­ness (in-between tar­get dig­its). For old­er com­pared to younger lis­ten­ers, acoustic detail had a stronger impact on task per­for­mance and alpha pow­er mod­u­la­tion. This sug­gests that alpha dynam­ics plays an impor­tant role in the changes in lis­ten­ing behav­ior that occur with age. Last­ly, alpha pow­er vari­a­tions result­ing from stim­u­lus manip­u­la­tions (of acoustic detail and pre­dic­tive­ness) as well as task-inde­pen­dent over­all alpha pow­er were relat­ed to sub­jec­tive lis­ten­ing effort. The present data show that alpha dynam­ics is a promis­ing neur­al mark­er of indi­vid­ual dif­fi­cul­ties as well as age-relat­ed changes in sen­sa­tion, per­cep­tion, and com­pre­hen­sion in com­plex com­mu­ni­ca­tion situations. 

Screen Shot 2014-12-03 at 13.07.13

Update #2

Ger­man radio broad­cast­er MDR Info did an inter­view & fea­ture on Mal­te’s Exper­i­ment. Check out the stream below:

Ref­er­ences

  • Wöst­mann M1, Her­rmann B2, Wilsch A2, Obleser J3. Neur­al alpha dynam­ics in younger and old­er lis­ten­ers reflect acoustic chal­lenges and pre­dic­tive ben­e­fits. J Neu­rosci. 2015 Jan 28;35(4):1458–67. PMID: 25632123. [Open with Read]
Categories
fMRI Linguistics Papers Publications Speech

New paper in Neu­roIm­age by Scharinger, Hen­ry, & Obleser [UPDATED]

A new paper is about to appear in Neu­roim­age on

Acoustic cue selec­tion and dis­crim­i­na­tion under degra­da­tion: Dif­fer­en­tial con­tri­bu­tions of the infe­ri­or pari­etal and pos­te­ri­or tem­po­ral cortices

by Math­ias Scharinger, Mol­ly J. Hen­ry, Jonas Obleser

Abstract
Cat­e­go­riz­ing sounds is vital for adap­tive human behav­ior. Accord­ing­ly, chang­ing lis­ten­ing sit­u­a­tions (exter­nal noise or periph­er­al hear­ing loss in aging) that may be accom­pa­nied by changes in dis­crim­inabil­i­ty, require lis­ten­ers to flex­i­bly adjust their cat­e­go­riza­tion strate­gies, some­times by changes in uti­liz­ing avail­able acoustic cues.
In this func­tion­al Mag­net­ic Res­o­nance Imag­ing (fMRI) study, we inves­ti­gate the cat­e­go­riza­tion of nov­el, non-speech audi­to­ry stim­uli that var­ied in over­all dis­crim­inabil­i­ty. More­over, we manip­u­late the rel­a­tive infor­ma­tive­ness of a dura­tion ver­sus a spec­tral-peak cue by adding spec­tral degra­da­tion in the mid­dle of the exper­i­ment. The results demon­strate dif­fer­ent roles of tem­po­ral and pari­etal brain areas for audi­to­ry cat­e­go­riza­tion: Tem­po­ral cor­tex acti­va­tion, in par­tic­u­lar in pos­te­ri­or parts of the right supe­ri­or tem­po­ral gyrus, scaled with dis­crim­inabil­i­ty, while left pari­etal cor­tex acti­va­tion was asso­ci­at­ed with changes in cue uti­liza­tion after the appli­ca­tion of spec­tral degradation.
This work extends pre­vi­ous research on audi­to­ry cat­e­go­riza­tion. Impor­tant­ly, the involve­ment of the left infe­ri­or pari­etal lob­ule in changes of cue uti­liza­tion sup­ports its role in domain-gen­er­al process­es that sup­port cat­e­go­riza­tion. Fur­ther, the sen­si­tiv­i­ty of the right pos­te­ri­or supe­ri­or tem­po­ral gyrus to stim­u­lus dis­crim­inabil­i­ty adds to pre­vi­ous find­ings regard­ing its role in audi­to­ry processing. 
[UPDATE] Link added.

Ref­er­ences

  • Scharinger M1, Hen­ry MJ2, Obleser J2. Acoustic cue selec­tion and dis­crim­i­na­tion under degra­da­tion: Dif­fer­en­tial con­tri­bu­tions of the infe­ri­or pari­etal and pos­te­ri­or tem­po­ral cor­tices. Neu­roim­age. 2015 Feb 1;106:373–81. PMID: 25481793. [Open with Read]
Categories
Ageing Auditory Cortex Auditory Neuroscience Auditory Perception Degraded Acoustics EEG / MEG Evoked Activity Hearing Loss Papers Psychology Publications Speech

New paper in press: Wöst­mann, Schröger, & Obleser in J Cogn Neurosci

Con­grat­u­la­tion to PhD stu­dent Malte Wöst­mann, who – with Erich Schröger and Jonas Obleser – has a new arti­cle in press at the Jour­nal of Cog­ni­tive Neuroscience

Acoustic detail guides atten­tion allo­ca­tion in a selec­tive lis­ten­ing task

forth­com­ing. We will update you accord­ing­ly as the paper comes online. We will share how­ev­er one of Malte’s fig­ures here as a teas­er: The paper utilis­es a very clas­sic com­po­nent of the evoked poten­tial, the con­tin­gent neg­a­tive vari­a­tion (the CNV; or a close rel­a­tive there­of, see the actu­al paper for dis­cus­sion) to study how old­er and younger lis­ten­ers allo­cate their atten­tion­al resources depend­ing on implic­it cues on to-be-expect­ed lis­ten­ing difficulties.

Screen Shot 2014-10-19 at 19.37.43

Ref­er­ences

  • Wöst­mann M1, Schröger E, Obleser J. Acoustic Detail Guides Atten­tion Allo­ca­tion in a Selec­tive Lis­ten­ing Task. J Cogn Neu­rosci. 2014 Nov 12:1–13. PMID: 25390200. [Open with Read]
Categories
Auditory Cortex Auditory Neuroscience Auditory Perception EEG / MEG Neural Oscillations Neural Phase Papers Psychology

New paper in press: Hen­ry, Her­rmann, & Obleser in PNAS

Con­grat­u­la­tions to Audi­to­ry Cognition’s very own Mol­ly Hen­ry who, with Björn Her­rmann and Jonas Obleser, is about to pub­lish yet anoth­er PNAS paper:

Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands co-mod­u­late behavior

Hen­ry MJ, Her­rmann B, & Obleser J. PNAS, in press.

We are very excit­ed about this one, as it harks back to Molly’s 2012 PNAS paper yet ups the ante some­what: How do neur­al oscil­la­tions behave towards a more real­is­ti­cal­ly com­plex mix­ture of acoustic reg­u­lar­i­ties, and how does lis­ten­ing behav­iour change as a func­tion of var­i­ous neur­al entrained phases?

read a short sum­ma­ry here…
Our sen­so­ry envi­ron­ment is teem­ing with com­plex rhyth­mic struc­ture, but how do envi­ron­men­tal rhythms (like those present in speech or music) affect our per­cep­tion? In a human elec­troen­cephalog­ra­phy study, we inves­ti­gat­ed how audi­to­ry per­cep­tion is affect­ed when brain rhythms (neur­al oscil­la­tions) syn­chro­nize with the com­plex rhyth­mic struc­ture in syn­thet­ic sounds that pos­sessed rhyth­mic char­ac­ter­is­tics sim­i­lar to speech. We found that neur­al phase in mul­ti­ple fre­quen­cy bands syn­chro­nized to the com­plex stim­u­lus rhythm and inter­act­ed to deter­mine tar­get-detec­tion per­for­mance. Crit­i­cal­ly, the influ­ence of neur­al oscil­la­tions on tar­get-detec­tion per­for­mance was present only for fre­quen­cy bands syn­chro­nized with the rhyth­mic struc­ture of the stim­uli. Our results elu­ci­date how mul­ti­ple fre­quen­cy bands shape the effec­tive neur­al pro­cess­ing of envi­ron­men­tal stimuli.

Stay tuned until after PNAS embar­go has been lifted!

[UPDATE]

PNAS paper is online. Check it out here.

Ref­er­ences

  • Hen­ry MJ1, Her­rmann B2, Obleser J1. Entrained neur­al oscil­la­tions in mul­ti­ple fre­quen­cy bands comod­u­late behav­ior. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14935–40. PMID: 25267634. [Open with Read]
Categories
Auditory Neuroscience Auditory Perception Auditory Speech Processing Clinical relevance Degraded Acoustics Gyrus Angularis Linguistics Noise-Vocoded Speech Papers Perception Psychology Speech

New paper in press: Hartwigsen, Golombek, & Obleser in Cor­tex [UPDATED]

In a col­lab­o­ra­tion with the Uni­ver­si­ty Clin­ic of Leipzig and Prof Dr Gesa Hartwigsen (now Uni­ver­si­ty of Kiel), a new paper is to appear in “Cor­tex”, in the forth­com­ing spe­cial issue on Pre­dic­tion in Speech and Lan­guage, edit­ed by Alessan­dro Tavano and AC alum­nus Math­ias Scharinger.

Repet­i­tive tran­scra­nial mag­net­ic stim­u­la­tion over left angu­lar gyrus mod­u­lates the pre­dictabil­i­ty gain in degrad­ed speech comprehension

Hartwigsen G, Golombek T, & Obleser J.

See abstract
Increased neur­al activ­i­ty in left angu­lar gyrus (AG) accom­pa­nies suc­cess­ful com­pre­hen­sion of acousti­cal­ly degrad­ed but high­ly pre­dictable sen­tences, as pre­vi­ous func­tion­al imag­ing stud­ies have shown. How­ev­er, it remains unclear whether the left AG is causal­ly rel­e­vant for the com­pre­hen­sion of degrad­ed speech. Here, we applied tran­sient vir­tu­al lesions to either the left AG or supe­ri­or pari­etal lobe (SPL, as a con­trol area) with repet­i­tive tran­scra­nial mag­net­ic stim­u­la­tion (rTMS) while healthy vol­un­teers lis­tened to and repeat­ed sen­tences with high- vs. low-pre­dictable end­ings and dif­fer­ent noise vocod­ing lev­els. We expect­ed that rTMS of AG should selec­tive­ly mod­u­late the pre­dictabil­i­ty gain (i.e., the com­pre­hen­sion ben­e­fit from sen­tences with high-pre­dictable end­ings) at a medi­um degra­da­tion lev­el. We found that rTMS of AG indeed reduced the pre­dictabil­i­ty gain at a medi­um degra­da­tion lev­el of 4‑band noise vocod­ing (rel­a­tive to con­trol rTMS of SPL). In con­trast, the behav­ioral per­tur­ba­tion induced by rTMS reversed with increased sig­nal qual­i­ty. Hence, at 8‑band noise vocod­ing, rTMS over AG vs. SPL increased the over­all pre­dictabil­i­ty gain. Togeth­er, these results show that the degree of the rTMS inter­fer­ence depend­ed joint­ly on sig­nal qual­i­ty and pre­dictabil­i­ty. Our results pro­vide the first causal evi­dence that the left AG is a crit­i­cal node for facil­i­tat­ing speech com­pre­hen­sion in chal­leng­ing lis­ten­ing conditions.

Screen Shot 2014-09-11 at 21.19.17

Check it out soon!

Ref­er­ences

  • Hartwigsen G1, Golombek T2, Obleser J3. Repet­i­tive tran­scra­nial mag­net­ic stim­u­la­tion over left angu­lar gyrus mod­u­lates the pre­dictabil­i­ty gain in degrad­ed speech com­pre­hen­sion. Cor­tex. 2014 Sep 18. PMID: 25444577. [Open with Read]
Categories
Ageing Auditory Perception Degraded Acoustics EEG / MEG Hearing Loss Neural Oscillations Papers Perception Publications Speech

Strauß strikes again — fron­tiers in Human Neuroscience

It’s only a week ago that we updat­ed you about Antje’s lat­est pub­li­ca­tion at Neu­roIm­age. Today, there is a anoth­er one com­ing in; Antje’s, Mal­te’s & Jonas’ per­spec­tive arti­cle on cor­ti­cal alpha oscil­la­tions is in press at fron­tiers in HUMAN NEUROSCIENCE.

Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhibition

— Strauß, Wöst­mann & Obleser

See abstract
Lis­ten­ing to speech is often demand­ing because of sig­nal degra­da­tions and the pres­ence of dis­tract­ing sounds (i.e., “noise”). The ques­tion how the brain achieves the task of extract­ing only rel­e­vant infor­ma­tion from the mix­ture of sounds reach­ing the ear (i.e., “cock­tail par­ty prob­lem”) is still open. In anal­o­gy to recent find­ings in vision, we pro­pose cor­ti­cal alpha (~10 Hz) oscil­la­tions mea­sur­able using M/EEG as a piv­otal mech­a­nism to selec­tive­ly inhib­it the pro­cess­ing of noise to improve audi­to­ry selec­tive atten­tion to task-rel­e­vant sig­nals. We review ini­tial evi­dence of enhanced alpha activ­i­ty in selec­tive lis­ten­ing tasks, sug­gest­ing a sig­nif­i­cant role of alpha-mod­u­lat­ed noise sup­pres­sion in speech. We dis­cuss the impor­tance of dis­so­ci­at­ing between noise inter­fer­ence in the audi­to­ry periph­ery (i.e., ener­getic mask­ing) and noise inter­fer­ence with more cen­tral cog­ni­tive aspects of speech pro­cess­ing (i.e., infor­ma­tion­al mask­ing). Final­ly, we point out the adverse effects of age-relat­ed hear­ing loss and/or cog­ni­tive decline on audi­to­ry selec­tive inhi­bi­tion. With this per­spec­tive arti­cle, we set the stage for future stud­ies on the inhibito­ry role of alpha oscil­la­tions for speech pro­cess­ing in chal­leng­ing lis­ten­ing situations.

Ref­er­ences

  • Strauß A1, Wöst­mann M2, Obleser J1. Cor­ti­cal alpha oscil­la­tions as a tool for audi­to­ry selec­tive inhi­bi­tion. Front Hum Neu­rosci. 2014 May 28;8:350. PMID: 24904385. [Open with Read]
Categories
Auditory Perception Auditory Working Memory Events fMRI Neural Oscillations Neural Phase Posters

Come and find us at CNS 2014 in Boston this weekend

The Obleser lab will be pre­sent­ing four posters at this year’s Annu­al Meet­ing of the Cog­ni­tive Neu­ro­science Soci­ety in Boston.

If you hap­pen to be there, come check us out!

A125Hemo­dy­nam­ic sig­na­tures of (mis-)perceiving tem­po­ral change
Her­rmann, Bjoern

C63Tem­po­ral pre­dictabil­i­ty atten­u­ates decay in sen­so­ry memory
Wilsch, Anna

D54Stim­u­lus dis­crim­inabil­i­ty and pre­dic­tive­ness mod­u­late alpha oscil­la­tions in a per­cep­tu­al­ly demand­ing mem­o­ry task
Wöst­mann, Malte

D130Slow acoustic fluc­tu­a­tions entrain low-fre­quen­cy neur­al oscil­la­tions and deter­mine psy­choa­coustic performance
Hen­ry, Molly

Categories
Auditory Working Memory Degraded Acoustics EEG / MEG Executive Functions Neural Oscillations Papers Publications Speech

New Paper out: Wilsch, Hen­ry, Her­rmann et al.

Quite recent­ly Cere­bral Cor­tex published

Alpha Oscil­la­to­ry Dynam­ics Index Tem­po­ral Expec­ta­tion Ben­e­fits in Work­ing Memory

by Anna Wilsch, Mol­ly J Hen­ry, Björn Her­rmann, Burkhard Maess, and Jonas Obleser.

Check the abstract below or fol­low that link to get the full arti­cle.

Abstract
Enhanced alpha pow­er com­pared with a base­line can reflect states of increased cog­ni­tive load, for exam­ple, when lis­ten­ing to speech in noise. Can knowl­edge about “when” to lis­ten (tem­po­ral expec­ta­tions) poten­tial­ly coun­ter­act cog­ni­tive load and con­comi­tant­ly reduce alpha? The cur­rent mag­ne­toen­cephalog­ra­phy (MEG) exper­i­ment induced cog­ni­tive load using an audi­to­ry delayed-match­ing-to-sam­ple task with 2 syl­la­bles S1 and S2 pre­sent­ed in speech-shaped noise. Tem­po­ral expec­ta­tion about the occur­rence of S1 was manip­u­lat­ed in 3 dif­fer­ent cue con­di­tions: “Neu­tral” (unin­for­ma­tive about forepe­ri­od), “ear­ly-cued” (short forepe­ri­od), and “late-cued” (long forepe­ri­od). Alpha pow­er through­out the tri­al was high­est when the cue was unin­for­ma­tive about the onset time of S1 (neu­tral) and low­est for the late-cued con­di­tion. This alpha-reduc­ing effect of late com­pared with neu­tral cues was most evi­dent dur­ing mem­o­ry reten­tion in noise and orig­i­nat­ed pri­mar­i­ly in the right insu­la. More­over, indi­vid­ual alpha effects dur­ing reten­tion account­ed best for observed indi­vid­ual per­for­mance dif­fer­ences between late-cued and neu­tral con­di­tions, indi­cat­ing a trade­off between allo­ca­tion of neur­al resources and the ben­e­fits drawn from tem­po­ral cues. Over­all, the results indi­cate that tem­po­ral expec­ta­tions can facil­i­tate the encod­ing of speech in noise, and con­comi­tant­ly reduce neur­al mark­ers of cog­ni­tive load.

Ref­er­ences

  • Wilsch A, Hen­ry MJ, Her­rmann B, Maess B, Obleser J. Alpha Oscil­la­to­ry Dynam­ics Index Tem­po­ral Expec­ta­tion Ben­e­fits in Work­ing Mem­o­ry. Cereb Cor­tex. 2014 Jan 31. PMID: 24488943. [Open with Read]